Tinker-HP : Readme/Quickstart (v1.2)

Louis Lagardere, Luc-Henri Jolly, Jean-Philip Piquemal

Sorbonne Université, Paris, France.
TinkerHP_Support@ip2ct.upme.fr

I. CITING TINKER-HP

If you use Tinker-HP please cite the following reference :

Tinker-HP: a Massively Parallel Molecular Dynamics Package for Multiscale Simulations of Large Complex Systems
with Advanced Polarizable Force Fields. L. Lagardere, L.-H. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. F. Jing, M.
Harger, H. Torabifard, G. A. Cisneros, M. J. Schnieders, N. Gresh, Y. Maday, P. Ren, J. W. Ponder, J.-P. Piquemal,
Chem. Sci., 2018, 9, 956-972 (Open Access) DOI: 10.1039/C7SC04531J

If you use the AVXS512 vectorized version of Tinker-HP 1.2, please also cite :

10.33011/livecoms.1.2.10409

Raising the Performance of the Tinker-HP Molecular Modeling Package [Article vi.0]. L.-H. Jolly, A. Duran,
L. Lagardere, J. W. Ponder, P. Y. Ren, J.-P. Piquemal, LiveCoMS, 2019, 1 (2), 10409 (Open Access) DOI:

A. Calculation Libraries

Tinker-HP requires the MKL library, a FFT library (such as FFTW) and a slightly modified 2DECOMP_FFT library (shipped
with Tinker-HP) in order to run. The 2DECOMP_FFT library enables parallel 3D FFT computations based on 2d-pencils data
distribution (see 2DECOMP_FFT site) based on a sequential implementation of FFTS such as the one provided by the FFTW

library.

B. PFarallel library

Tinker-HP also requires a recent enough MPI library supporting MPI 3.x standards such as non blocking collectives. The code
has been extensively tested with recent IntelMPI versions (such as intel MPI 5.1) and better performances have been observed

II. PREREQUISITES

with this family of MPI implementation compared to other ones such as OpenMPI .

As Tinker-HP is shipped in source form, you need to compile it. This was not always an easy task in the previous releases.
Tinker-HP now uses a configure script built with autotools packages from GNU to ease the compilation and installation

III. INSTALLATION

process. Apart from the usual options available with all configure scripts, there are specific options for Tinker-HP.

Usage: ./configure [OPTION]...

Optional Features:
——enable-debug
—-—enable-skylake
——enable-knl
——enable-fft-generic
——enable-fft-mkl
——enable-fft-fftw3

——enable—-fft-fftw3_f03

Optional Packages:
—--with-blaslib=<BLAS LIB>

——with-fftlib=<FFT LIB>

[VAR=VALUE] ...

Enable debug mode (check array bounds, implicit
none, etc...). Should not be active in normal
operations [default is no]

Enable AVX512 Optimization for Skylake Processors
[default is no]

Enable AVX512 Optimization for KNL (Xeon Phi)
Processors [default is no]

Enable generic FFT mode [default is yes]

Enable MKL FFT mode [default is no]

Enable fftw3 FFT mode [default is no]

Enable fftw3_f03 FFT mode [default is no]

Specify BLAS library [mkl, lapack or
/absolute/path/to/BLAS_library]

Specify a library for FFT called by 2decomp [mkl or

https://pubs.rsc.org/en/content/articlelanding/2018/sc/c7sc04531j
https://www.livecomsjournal.org/article/10409-raising-the-performance-of-the-tinker-hp-molecular-modeling-package-article-v1-0
https://www.livecomsjournal.org/article/10409-raising-the-performance-of-the-tinker-hp-molecular-modeling-package-article-v1-0
http://www.2decomp.org

fftw3 or /absolute/path/to/FFTW_library]

The ultimate goal of this script is to let you type
./configure ; make ; make install ; cd example ; ./ubiquitin2.run

and have everything compiled, installed and running.

A. List of Options

As for all the configure scripts, you can choose the directory in which the binaries will be copied. So, configure
has ——prefix=<DIR>.
Tinker-HP has a special interest to know if it will run on AVX-512 capable processors. So, configure has options for
that:

—-—enable-slylake
—-—enable-knl

Recall that Tinker-HP needs to make a FFT decomposition with a modified version of the 2DECOMP_FFT library, which in
turn needs a working FFTW library. This is why you can find configure options about FFT interface and library:

——enable-fft-generic
——enable—-fft-mkl
——enable-fft-fftw3
——enable-fft-fftw3_f03
——with-fftlib=<FFT LIB>

Tinker-HP also needs some functions that resides in a working BLAS library. So, there is an option for that:
——with-blaslib=<BLAS LIB>

Finally, as there might be some execution problems, or compilation problems for the users who develop code, Tinker-HP
as an ——enable-debug option.

configure tries to find its path to reach a valid MPI compiler and a valid Fortran compiler by unsetting the environment
variables SFC and $F77, and reading the environment variable SPATH. It also tries to find valid FFT and BLAS libraries by
reading SFFTW and $SMKLROOT or $LAPACK respectively. Most of the time, these environment variables are defined through
the module framework. As a try, do a

module available 2>&1 | less

to see if you have the module framework installed on your machine, and to know what module you can load. configure
then figures out how to build the correct Makefiles.

By default, configure chooses the MKL library from Intel as the BLAS and FFTW3 libraries, sets the
-—enable-fft-mkl option, does not make any processor optimization, and disables debugging. Thus, typing
./configure give the same result as if you have typed ./configure ——enable-fft-mkl ——-with-blaslib=mkl
——with-fftlib=mkl.

B. Using configure

If you want to have different settings than those used by default, you’ll have to give configure more information. Be
aware that configure cannot magically guess anything. So, the information you give must be precise and complete.

1) Install Directory: By default, this is where you have unzipped and untarred the distribution. If you want another place,
use ——prefix=<DIR>. You can choose any directory you want, providing that you have permission to create this directory
and/or write in it.

2) Processor optimization: The machine on which you compile is not always the one on which Tinker-HP will run. If you
know that Tinker-HP is going to run on AVX-512 capable processors, you are strongly encouraged to use one of :

——enable-knl for KNL processors (also known as Xeon-Phi)
-—enable-slylake for Skylake processors.

as this will dramatically improve the execution speed. Otherwise, the optimization will be done using the capabilities of the
compilation machine, as determined by the compiler.

3) FFT interface: You can choose the interface of FFTW you want to use. This has an effect on the 2DECOMP_FFT library.
So :

-—enable-fft-generic gives the generic FFT, with no call to FFTW library

——enable-fft-mkl gives the MKL FFT. It also automatically selects the MKL library as the FFTW library.
——enable-fft-fftw3 gives the fftw3 interface, and is designed to work with an external FFTW library.
——enable-fft-fftw3_f03 gives the fftw3 Fortran2003 interface, and is designed to work with an external FFTW
library

4) FFT Library: You can choose the FFTW library you want to use. It can come from the MKL suite, or some FFTW3
package (either system installed, or compiled by you). So :

——with-fftlib=mkl : selects the MKL library, but needs the variable $SMKLROOT to be

set to the absolute path of the MKL library
——with-fftlib=/path/to/mkl/library : selects the MKL library by giving the absolute path of the MKL

library
——with-fftlib=fftw3 : selects the FFTW3 library, but needs the variable SFFTW to be set

to the absolute path of the FFTW3 librarg
——with-fftlib=/path/to/fftw3/library : selects the FFTW3 library by giving the absolute path of the FFTW3

library
Here are typical commands you can type. If SMKLROOT has been correctly set :

./configure --enable-fft-mkl —--with-fftlib=mkl
If you wish to give the absolute path of the library :

./configure --enable-fft-mkl --with-fftlib=/path/to/mkl/library
./configure —--enable-fft-fftw3 —--with-fftlib=/path/to/fftw3/library

These last commands can also be written this way :

MKLROOT=/path/to/mkl/library ./configure —-—enable-fft-mkl ——with-fftlib=mkl
FFTW=/path/to/fftw3/library ./configure --enable-fft-fftw3 —--with-fftlib=fftw3

5) BLAS library: You can choose the BLAS library you want to use. It can come from the MKL suite or some LAPACK
package (either system installed, or compiled by you). So :

——with-blaslib=mkl : selects the MKL library, but needs the variable SMKLROOT to
be set to the absolute path of the MKL library

--with-blaslib=/path/to/mkl/library : selects the MKL library, by giving the absolute path of the MKL
library

——with-blaslib=lapack : selects the LAPACK library, but needs the variable SLAPACKto

be set to the absolute path of the LAPACK library
-—with-blaslib=/path/to/lapack/library: selects the LAPACK library, by giving the absolute path of the

LAPACK library.
Here are typical commands you can type. If SMKLROOT has been correctly set :

./configure —--enable-fft-mkl —--with-blas=mkl
If you wish to give the absolute path of the library :

./configure —-—-enable-fft-mkl --with-blas=/path/to/mkl/library
./configure --enable-fft-mkl --with-blas=/path/to/lapack/library

These last commands can also be written this way :

MKLROOT=/path/to/mkl/library ./configure —--enable-fft-mkl --with-blas=mkl
LAPACK=/path/to/lapack/library ./configure —--enable-fft-mkl --with-blas=lapack

6) DEBUG mode: This mode is primarily intended for developers, but can also be useful if you experience errors while
running Tinker-HP. Adding ——enable-debug to the configure command turns on boundary checking, forces implicit
none, sets the optimization level to 0 (the lowest value) and enables backtracing and all warnings. The compilation produces
all the binaries and gives them the .debug extension, so that you know that these binaries are not optimized.

C. Output of configure
configure produces a final log to resume what will be done. It displays using colors (if available) all the information

you gave, and everything it has been able to catch from the environment.
Here is the result of a successful run of the configure command :

FFTW=/usr/local/fftw-3.3.7/Intel/2018/impi/
./configure --enable-debug --enable-fft-fftw3 --with-fftlib=fftw3 --with-blas=lapack

where we give the absolute path of the FFTW3 library in the SFFTW variable, ask for the DEBUG mode, enable the fftw3
interface, use the FFTW3 library and want the lapack library for BLAS, assuming that the SLAPACK variable is already set.

configure:
Configure; R R I e b b b b b b S b I b b b S b S Sh b 2 Sh b dh b Sh I 2 Sh b b b i dh b dh b b db b b dh Sh b S Sh b 2 b b 2h S b Sh b J Sh b 2 b i 4

configure: xx*

configure: x% Running Mode : DEBUG (binaries’extension is .debug)

configure: %% MPI Fortran Wrapper : mpiifort

configure: xx Fortran Compiler : ifort

configure: xx Fortran flags : =00 -g -u -warn all -check bounds -no-ipo
—-no-prec-div -inline -heap-arrays -traceback -xHost

configure: xx 2decomp Library : -L ../2decomp_fft/src/ -12decomp_fft

configure: xx FFTW3 Interface : fftw3 of the FFIW3 library

configure: *% FFTW3 Path : /usr/local/fftw-3.3.7/Intel/2018/impi//1lib

configure: x* FFTW3 Includes : -I /usr/local/fftw-3.3.7/Intel/2018/impi//include

configure: xx FFTW3 Library : —1lfftw3

configure: x% BLAS Type : LAPACK

configure: xx BLAS Path : /usr/local/Libraries/lapack-3.8.0/Intel/2018

configure: #*x Prefix installation : /home/lhj/neutron/Tinker/REL/PME/v1.2

configure: #x Binaries location : /home/lhj/neutron/Tinker/REL/PME/v1.2/bin

configure: =xx
Configure: KA KA A A AR A AR A AR A A A A AR A A A A A A AR AR AR A A A A A A A A A A A A A A Ak A A dA A Ak kA kA Ak dA Ak k kK

configure:

This log confirms that we are in DEBUG mode and that we use the Intel compiler ifort and the mpiifort wrapper
from InteIMPI. The installation directory where all binaries (with .debug extension) will be installed is shown as well.

D. Making binaries

Once you are happy with the option you selected, it’s time to run the make command, or even the make install
command, which will compile and install all at once.

As the compilation process takes care of the dependencies between subroutines and modules, you can safely use the —j
flag of the make command to do parallel compilation. This would dramatically speedup the compilation process.

Anyway, on modern machines, the compilation is not very long, except for 2 or 3 subroutines that can take up to 5(!)
minutes to compile, depending on the compiler you use and even on the fastest machines. Everything should compile and link
gracefully. Using make install will copy the binaries into the directory you selected with the ——prefix=<DIR> option.
Don’t forget to install the binaries you created, or you will not be able to run the examples.

IV. NOTE FOR DEVELOPERS
A. Writing new sources

We don’t want to impose you a unique style of writing. Indeed, we don’t have one. But we just want to give you some
rules we believe are important for the consistency of Tinker-HP’s code.
a) File format: We use FIXED FORM format throughout all the code, even though the code is written in FORTRAN90.
This is mandatory. The compilation process would not work otherwise.
b) Editing: We always use lowercase letters for code (except for printing purposes). We indent all lines embedded in
do..... enddo, do..... while, etc... statements, or in 1 f...else...endif constructs.
c) Variable declarations: You are required to use implicit none. If you compile in debug mode, that will be enforced
by the compiler.
The order we use to declare variables is:
1) integer (4 bytes sized)
2) real (8 bytes sized)

3) logical
4) array (in the same order)
5) character (single string or array)

We always try not to mix different types of variables in the same declaration line. This is not just because it is easier to
read. That is also because it is more memory efficient, particularly for vectorization, where alignment in memory is crucial.
character should be put at the very end, since they can have arbitrary lengths and almost never align to a memory boundary.
We also try to choose significant names for the variables.

d) Comments: We always begin a comment line by the c character. The ! character should only appear in the middle
of a line. This is because the ! character at the beginning is reserved to introduce compiler directives.

If ever you create modules, please comment all the new variables you create, like :

c maxvalue atoms directly bonded to an atom
¢} maxgrp user—-defined groups of atoms

c maxtyp force field atom type definitions
c maxclass force field atom class definitions

In subroutines or functions, give as many comments as you believe is needed to understand what your code is doing. That
would be precious for you, and for us as well.

B. Compiling new sources

If you make development on Tinker-HP, it is likely that you would need to add subroutines and modules in the source
directory.

All modules should be put in files named MOD_xxxxx . £, even though they are written in FORTRAN90. All functions and
routines should be put in files with names beginning by a lowercase letter and with . £ extension. Please, try to find significant
names (epolarltcg2shortreal. £ is far better than epltc2shre. £). You are required to follow this scheme as much
as possible.

To compile your new sources, you should add them in the Makefile.am file of the source directory. We’ve put some
comments in this file, to help you know where to put things. Search for the string Add in the file.

There are 3 different cases'}

1) You created a new main program (like analyze or dynamic). Add a line
bin_PROGRAMS += yourmain
(with no extension) below the line bin_PROGRAMS += testgrad. Then, add the lines
yourmain_SOURCES = yourmain.f
and
yourmain_ DEPENDENCIES = libtinkermod.a libtinkercalc.a
after the similar lines concerning testgrad.
2) You created new module(s). Add lines
libtinkermod_a_SOURCES += MOD_xxxxXx.f
just belowE] libtinkermod_a_SOURCES += MOD_virial.f
3) You created functions and subroutines. Add lines like
libtinkercalc_a_SOURCES += yourexplicitfilename.f
ﬁmtbdowﬂthehnelibtinkercalc_a_SOURCES += version.f

You should now go in the main directory, where configure. ac resides, and type autoconf and automake. autoconf
should not generate any message. aut omake will probably do, mainly because of a different version than the one we used
to create the distribution. In this case, just type aclocal before running automake again. These 2 (or 3) commands will
generate a new configure script that takes care of your new sources. You should then run . /conf igureﬂ compile, install
and enjoy debugging your code.

V. EXECUTABLES

After having successfully compiled the code, five executable files should be present in the install directory: analyze,
bar, dynamic, testgrad and minimizeE], which are the analogous of the binaries of the Tinker-8.4 release and require

1Of course, you can match all three at the same time!

2 As the compilation process takes care of all the dependencies, the positions of the lines you add are not really significant. But putting the new lines at the
end is just a way of remembering they are — well — new.

3Same remark as above.

4Presumably with the ——enable-debug option flag.

SIf you have ever compiled with ——enable-debug before, you should have 5 more binaries.

similarly a geometry (given by a *.xyz file), a simulation setup (given by a *key file) and possibly a restart (given by a *.dyn
file) for the dynamic program.

All these executables must run in the same environment you had during the compilation phase. That means the same set
of modules, or the correct LIBRARY_PATH. They should be launched with the mpirun -np x prefix in order to run in
parallel with x MPI processes.

The only boundary conditions that are available in this release are periodic boundary conditions treated with Particle Mesh
Ewald. Classical force fields such as AMBER, CHARMM and OPLS are available in Tinker-HP as well as polarizable force
fields such as AMOEBA.

A. analyze

The analyze executable allows potential energy analysis. Compared to the Tinker-8.4 software, the only option compatible

with this binary is e”.
For example the command line:

mpirun -np 16 ./analyze dhfr2 e
will give you as an output the potential energy terms of the geometry given by a dhfr2.xyz file and with the simulation
setup given by the dhfr2.key file. Furthermore, this computation will run on 16 MPI processes.

B. dynamic

The dynamic executable allows to run molecular dynamics simulation. As for Tinker-8.4, the command line used to run
the MD should give first the number of MD steps to make, then the size of each time step (in femtoseconds), then the time
between each writing of geometry (in picoseconds), then the statistical ensemble to sample : 1 is NVE, 2 is NVT, 4 is NPT.
For NVT and NPT simulations, this number should be followed by the temperature (in Kelvin) of the simulation, and for NPT
simulation by the pressure (in Atmosphere) of the simulation.

For example the command lines:

mpirun -np 16 ./dynamic dhfr2 1000 1 1 1

will give you as an output 1000 MD steps in NVE for the dhfr2 system, with a 1 fs time step and a 1 ps frequency output.
mpirun -np 16 ./dynamic dhfr2 1000 1 1 2 300

will give you as an output 1000 MD steps in NVT at 300K for the dhfr2 system, with a 1 f5 time step and a 1 ps frequency
output.

mpirun -np 16 ./dynamic dhfr2 1000 1 1 4 300 1

will give you as an output 1000 MD steps in NPT at 300K and latm for the dhfr2 system, with a 1 fs time step and a 1
ps frequency output.

C. testgrad

The testgrad program is absolutely equivalent to the one of the Tinker-8.4 release: it allows the output of the components
of the analytical and/or numerical gradients of the different energy terms.
For example, the command line:
mpirun -np 16 ./testgrad dhfr2 Y Y 0.0001 Y

will give you as an output all the analytical and numerical gradients (computed with an increment of 0.0001 Angstroms
for the positions of the atoms) of all the energy terms of the dhfr2 system.

D. minimize

The minimize program computes energy minimization starting from a given structure, using a low memory quasi-newton
BFGS algorithm as in Tinker-8.4. The command line used should give the numerical threshold for the convergence of the
algorithm.

For example, the command line:

mpirun -np 16 ./minimize dhfr2 0.1
will compute energy minimization on the dhfr2 structure until the RMS on the gradient is inferior to 0.1. The new
geometry will be written at each iteration of the algorithm in the file dhfr2.xyz_2.

VI. KEYWORDS

The main keywords of Tinker-8.4 are available in Tinker-HP. So, a description of these keywords can be found in the Tinker
user guide. Let us review a few of these and some new ones which are specific to Tinker-HP.

https://dasher.wustl.edu/tinker/downloads/guide.pdf
https://dasher.wustl.edu/tinker/downloads/guide.pdf

A. Keywords specific to the dynamic program

o Integrators: As in Tinker, the integrator of a dynamic is imposed by the keyword ”integrator x”, x being one of the
available integrator:

BEEMAN : The default one

VERLET : Verlet

BBK : Langevin Dynamics for constant temperature simulations

BAOAB : Langevin Dynamics for constant temperature simulations

RESPA : Bonded/non bonded respa-split with a velocity-verlet inner loop and with a 0.25 fs default timestep

for the inner loop

BAOABRESPA : Bonded/non bonded respa-split for Langevin dynamics with a BAOAB inner loop, the default time
step for the inner loop is also 0.25 fs

RESsPAl : (Bonded)/(short range non bonded)/(long range non bonded) three level respal-split with a velocity
verlet inner loop. The default timesteps are 0.25 fs for the inner loop and 2 fs for the intermediate one

BAOABRESPA1 : (Bonded)/(short range non bonded)/(long range non bonded) three level respal-split for Langevin
dynamics with a BAOAB inner loop. The default timesteps are 0.25 fs for the inner loop and 2 fs for
the intermediate one

BAOABPISTON : Constant pressure BAOAB Langevin dynamics with a Langevin Piston pressure control and a BAOAB
evolution of the volume extended variable. The default mass of the piston is 2e~° atomic units and

the default friction for the piston is 20.0 ps—'.

For all the Langevin integrators (BBK, BAOAB, BAOABRESPA, BAOABRESPA1 and BAOABPISTON), the friction (in
ps~1) can be controlled by the keyword gamma x, the default being 1 ps—!.

For RESPA, BAOABRESPA, RESPA1 and BAOABRESPA1, the inner timestep can be imposed by the keyword dshort
x, x being its desired value in ps.

For RESPA1 and BAOABRESPA1, the intermediate timestep can be imposed by the keyword dinter x, x being its
desired value in ps.

For BAOABPISTON, the mass of the piston (in atomic units) can be set by the keyword masspiston x and the friction

of the piston (in ps—!) can be set by the keyword gammapiston x.

o Thermostats and barostats: Aside from the Langevin integrators, the thermostats available in Tinker-HP are Berendsen,
Bussi (which is the default one) and Andersen. Aside from the Langevin Piston, the barostats available in Tinker-HP
are the Berendsen (which is the default one) and the Monte-Carlo one. These option can be set by putting the key-
words: thermostat berendsen, thermostat bussi, thermostat andersen, barostat berendsen
and barostat montecarlo in the key file.

Tinker-HP deals with restart files for dynamic trajectories the same way as Tinker-8.4 does by creating a *.dyn file
encompassing current positions, velocities and accelerations of the system.

B. New keywords specific to Tinker-HP

Some new keywords have been introduced in Tinker-HP. The first one concern the algorithm used to converge the polarization
equations.

polar-alg x : choose the algorithm used to compute the dipoles solution of the polarization equations. x can be:
1 : Conjugate Gradient with a diagonal preconditioner
2 : Jacobi/DIIS
3 : Truncated Conjugate Gradient (TCG)
5 : Divide and Conquer Jacobi/DIIS (default)

TCG is a systematically improvable method with 4 tunable parameters that can be controlled by different keywords, each
of them being prefixed by tcg:

tcgorder x : order of the TCG truncation, x can take the value 1 (TCG1) or 2 (TCG2), default is 2

tcgprec x : use of a diagonal preconditioner. x can take the value 1 (YES) or 0 (NO), default is 1

tcggues x : use of a "direct guess” (polarizability x permanentclectricyield) as a guess. x can take the value 1 (YES)
or 0 (NO), default is 0.

tcgpeekx : use of a peek step. x can take the value 1 (YES) or 0 (NO), default is 1. When a peek step is used, a Jacobi
Over Relaxation (JOR) is applied to the TCG values of the dipoles with a parameter w. By default, this value
is w = 1. (regular Jacobi step) but three keywords can modify this:

tcgomega x : change the value of the w parameter to x.

tcgomegafit : impose a regular fitting of the w parameter to match at regular intervals the fully converged
polarization energy.

tcgomegafitfreq x : number of timesteps between two updates of the fitted w parameter. The default of x is 1000.

When the RESPA1 and BAOABRESPA1 integrators are used, one has to solve the short range real space polarization
equations at the intermediate time steps. By default, this is done using the same algorithm as the one used to solve the
complete polarization equations at the outer time steps. But one can chose a different algorithm to solve the short range
polarization by using the keyword polar-algshort with the same possible values as for polar-alg. If TCG is chosen as a short
range polarization solver, one can define all the related option for this solver by taking the same keywords defined above and
adding the suffix short:

tcgordershort : order of the short range TCG truncation
tcgprecshort : use of diagonal preconditioner or not
tcgguessshort : use of a “direct guess”

tcgpeekshort : use of a peek

tcgomegashort w : choice of the peek step parameter

With the introduction of Steered Molecular Dynamics come two keywords:

CVSMD for Constant Velocity Steered Molecular Dynamics
CFSMD for Constant Force Steered Molecular Dynamics.

The use of those two forms of steered molecular dynamics (SMD) is described in a dedicated tutorial which can be found
in the tutorials/SMD/ directory, along with two subdirectories (CFSMD and CVSMD) containing input files, running
scripts and output files. The 2 Tinker Archives corresponding to CVSMD and CFSMD (178MB each) can be downloaded at
http://tinker-hp.ip2ct.upmc.fr/?Download-Process.

Unlike Tinker-8.4, the neighbor-lists for non bonded interactions are computed every x steps (x=20 being the default for a 2
fs time step) and not adjusted dynamically at each time step. This frequency of update can be modified by using the keywords
nlupdate x, 1 corresponding to a neighbor-list update at each time step (which can be useful during equilibration for example).

Other keywords have been introduced to specify parallel options when running Tinker-HP. The current distributed release
is only available with the PME algorithm which involves direct and reciprocal space computations in the electrostatic and
polarization interactions. As the reciprocal space interactions are known to have a less efficient parallel scaling (because of
FFTs) it is possible to specify a lower number of MPI processes that will be dedicated to these computations for both the
computation of electrostatic and polarization interactions. This can be done by using the keyword pme-procs x, corresponding
to x MPI processes dedicated to reciprocal space computations.

To find the ideal x value of pme-procs, a good starting point, when a large number of cores is used, is usually to dedicate
about % of the total cores to reciprocal space computations. But this parameter depends greatly on the machine used and on
the setup of your simulation so it should be adjusted manually by comparing the timings obtained with different values for
pme-procs. During a dynamic, detailed timings are written when the verbose keyword is in the *.key file. In the future, the
parameter pme-procs will be adapted heuristically by the program as it is done in popular MD packages.

As explained in the beginning of the document, Tinker-HP distributes the data on a grid used to run 3D FFT in 2d pencils
which can be associated to a 2d processor grid as explained in 2DECOMP_FFT web page. By default, the library looks for an
optimal 2d processor grid given the number of cores available but this decomposition can be imposed by the user by setting
the keyword: decompfft-grid nl1 n2, corresponding to a nlxn2 processor grid.

Note that the user does not have to specify that he wants neighbor-lists to be used as it is the only available option in
Tinker-HP.

VII. EXAMPLES

4 examples of systems with associated *.key files are given in the distribution: ubiquitin2, dhfr2, puddle and pond. The
sizes of these systems are respectively: 9737, 23558, 96000 and 288000 atoms, making them good various benchmarks for the
program.

4 different setups are given for the ubiquitin system with 4 different key files:

http://www.2decomp.org/decomp.html

1) ubiquitin2.key : regular (langevin with BAOAB integration based) 2 fs respa (bonded/non-bonded split)
computations with DC-JI/DIIS as a polarization solver

2) ubiquitin2tcg.key : 2 fs respa computations with TCG2 (with a diagonal preconditioner, no guess and a peek
step with w = 1 as a polarization solver

3) ubiquitin2respal.key : 6 fs respal (bonded/short range non-bonded/long range non-bonded split) langevin with
BAOAB integration computations with DC-JI/DIIS as a short and total polarization solver

4) ubiquitin2respaltcg.key : 10 fs respal langevin with BAOAB integration computations with heavy hydrogen, TCGI
(with a diagonal preconditioner, no guess and no peek step) as a short range polarization
solver and DC-JI/DIIS as a total polarization solver

A fifth example is reserved for debug purposes. It’s exactly the same as the first one. . /ubiquitin2.debug. run runs

the dynamic.debug binary.

VIII. TUTORIALS

Three tutorials can be found in the directory tutorials of the release:

A general tutorial to prepare systems for Tinker/Tinker-HP : Tinker_preparation_tutorial.pdf
A tutorial to use Umbrella Sampling with Tinker/Tinker-HP : Umbrella_sampling_tutorial.pdf
A tutorial to use Steered MD with Tinker-HP : SMD/SMD_manual.pdf

IX. SUPPORT

Tinker-HP is maintained by few people. That means we cannot promise you to answer in a minute to your requests.
Anyway, if you have any question or need any support for Tinker-HP, feel free to send a mail to our team at
TinkerHP_Support@ip2ct.upmc.fr. We will answer as soon as we can, providing that we can !

	Citing Tinker-HP
	Prerequisites
	Calculation Libraries
	Parallel library

	Installation
	List of Options
	Using configure
	Install Directory
	Processor optimization
	FFT interface
	FFT Library
	BLAS library
	DEBUG mode

	Output of configure
	Making binaries

	Note for developers
	Writing new sources
	Compiling new sources

	Executables
	analyze
	dynamic
	testgrad
	minimize

	Keywords
	Keywords specific to the dynamic program
	New keywords specific to Tinker-HP

	Examples
	Tutorials
	Support

