AMBER 11 with Intel Cluster Ready

BEST PRACTICES

1. Introduction

The following best practices document is provided as courtesy of the HPC Advisory Council.

2. Application Description:

AMBER is a popular software application for analyzing large-scale molecular dynamics (MD) simulation trajectory data. AMBER Reads either CHARMM or AMBER style topology/trajectory files as input, and its analysis routines can scale up to thousands of compute cores or hundreds of GPU nodes with either parallel or UNIX file I/O. AMBER has dynamic memory management, and each code execution can perform a variety of different structural, energetic, and file manipulation operations on a single MD trajectory at once. The code is written in a combination of Fortan90 and C, and its GPU kernels are written with NVIDIA's CUDA API to achieve maximum GPU performance.

3. Version Information:

Download AMBER 11 and AmberTools 1.5 at:

http://ambermd.org

http://ambermd.org/AmberTools-get.html

Download the list of benchmarks for Amber from:

http://ambermd.org/amber11_bench_files/Amber11_ Benchmark_Suite.tar.gz

4. Prerequisites:

The instructions from this best practice have been tested with the following configuration:

4.1 Hardware:

- Dell PowerEdge M610 38-node cluster
- Intel Xeon X5670 CPUs @ 2.93 MHz
- Memory: 24GB per node @ 1333MHz
- Mellanox ConnectX-2 QDR InfiniBand Adapters
- Mellanox QDR InfiniBand Switch

4.2 Software:

- Intel® Cluster Ready running RHEL 5.5
- Mellanox OFED 1.5.2 InfiniBand Software Stack
- Application: AMBER
- Compilers: Intel compilers

- MPI: Intel MPI 4, Open MPI 1.5.3 with KNEM 0.9.6, Platform MPI 8.1.1
- Benchmark workload: primates.nex

5. Building AMBER

Extract Amber and Ambertools:

- \$ mkdir ~/amber
- \$ cd ~/amber
- \$ tar xvfj ~/Amber11.tar.bz2
- \$ tar xvfj ~/AmberTools-1.4.tar.bz2
- \$ cd amber11
- \$ wget http://ambermd.org/bugfixes/11.0/bugfix.all
- \$ patch -p0 -N < bugfix.all
- \$ cd ~/amber/amber11/AmberTools/src

#

use one of the following three:

#

- \$./configure -mpi gnu # for GNU Compilers
- \$./configure -mpi intel # for Intel Compiler
- \$./configure -mpi pgi # for PGI Compilers

#

- # If you are using Intel Compilers with Intel MPI, please make sure the
- # following variables are set in config.h, after the configure has been run

#

- # CC=mpiicc
- # FC=mpiifort
- # PMEMD_F90=mpiifort
- # PMEMD_CC=mpiicc
- # PMEMD_LD=mpiifort

#

\$ cd ../../src/

Modify the config.h as mentioned above if you are

using Intel MPI

- # with Intel Compilers
- # vim config.h
- \$ make clean
- \$ make parallel

6. Building AMBER

Change to the directory with the dataset to run the job:

\$ cd ~/amber/Amber11_Benchmark_Suite/PME/Facto-rIX_production_NVE_128_64_64

a. Running with Intel MPI

\$ mpdboot --parallel-startup -r ssh -f <PATH_TO_ HOSTFILE> -n 16

\$ mpiexec -ppn 12 -np 192 -lB ~/amber/amber11/bin/pmemd.cuda.MPI -O -i mdin

\$ mpdallexit

b. Running with Platform MPI

\$ mpirun -np 192 -IBV -prot -hostfile <PATH_TO_ HOSTFILE> ~/amber/amber11/bin/pmemd.cuda.MPI -O -i mdin

c. Running with Open MPI

\$ mpirun -np 16 -mca btl self,sm,openib -hostfile <PATH_TO_HOSTFILE> < <AMBER_HOME>/mb <AMBER_HOME>/input

d. Running with MVAPICH2

\$ mpiexec.hydra -hosts < HOSTLIST> -np 192 /amber/ amber11/bin/pmemd.cuda.MPI -O -i mdin

350 Oakmead Pkwy, Sunnyvale, CA 94085 Tel: 408-970-3400 ● Fax: 408-970-3403 www.hpcadvisorycouncil.com