BQCD Best Practices for Intel® Cluster Ready

BEST PRACTICES

1. Introduction:

The following best practices document is provided as courtesy of the HPC Advisory Council.

2. Application Description:

BQCD (Berlin Quantum ChromoDynamics program) is a hybrid Monte-Carlo code that simulates Quantum Chromodynamics with dynamical standard Wilson fermions. The computations take place on a four-dimensional regular grid with periodic boundary conditions. The kernel of the program is a standard conjugate gradient solver with even/odd pre-conditioning.

For further information, see http://www.deisa.eu/science/benchmarking/codes/bgcd

3. Version Information:

Download BQCD

http://www.deisa.eu/science/benchmarking

4. Prerequisites:

4.1 Hardware:

The instructions from this best practice have been tested on Dell PowerEdge M610 blade server

- Intel® Xeon 5670 processors
- Mellanox QDR InfiniBand HCA (Driver: MLNX_ OFED 1.5.1)
- Mellanox QDR InfiniBand switch

4.2 Software:

1. OS

Intel® Cluster Ready Platform, using CentOS 5.4

2. Compilers

The Intel® C and C++ Compiler for Linux; We used Intel® version 11.1.064

3. Libraries in addition to Intel® Cluster Ready configura-

Intel MPI 4.0.0.028 or Open MPI 1.4.1 (compiled by Intel® compiler)

5. Building BQCD

1. Compile BQCD

```
export FPP = ifort -E
export FPP2 = icc -E -C -P
export F90 = mpif90 -fc=ifort
export CC = mpicc -cc=icc
# make -i 8
```

Executable bqcd will be generated under bin directory

6. Building BQCD:

 Create benchmark input file, for example: run 0

lattice 48 6 12 48
processes 1 1 2 4
boundary_conditions_fermions 1 1 1 -1

beta 5 kappa 0.13 csw 2.3327 h 0

hmc_test 0
hmc_model C
hmc_rho 0.1
hmc_trajectory_length 0.2
hmc_steps 10
hmc_accept_first 1
hmc_m_scale 3

start_configuration cold start_random default

mc_steps 1

mc_total_steps 100

solver_rest 1e-99

solver_maxiter 50

solver_ignore_no_convergence 2

solver_mre_vectors 7

In this input file, line lattice specifies lattice size and line processes specifies total number of processes (8 process in this example)

2. Running benchmark

mpirun --mca mpi_affinity_alone 1 -np 8 -hostfile host bqcd ./input

Benchamrk performance is the line CG printed in the middle of the output file.

