
MetaHipMer2
A metagenome assembly application written in UPC++

Steven Hofmeyr
April 2021

MetaHipMer2

● Part of Exascale Computing Project Exabiome project
developed at Lawrence Berkeley National Laboratory (LBL)

● Original MetaHipMer (v1) was released in 2017 (written in
UPC/MPI)

● Released version 2 of MHM on Sept 30th 2020
○ Entirely rewritten in UPC++ (developed by Pagoda ECP project at LBL)

● Runs 2x to 10x faster than MHM v1 and uses 2x less
memory

Metagenome Assembly
microbial genomes (1000s)
● varying abundance (frequency)
● sequence depth (how many times

sequenced, e.g. 50x)

reads
● typical length for short reads 150-250
● error prone, e.g 0.24% per base
● number of reads for a genome

dependant on sequence depth and
abundance

contigs
● contiguous sequences
● the longer the better
● the fewer errors the better

sequence

assemble

Science Analysis with MetaHipMer

What happens to microbes after a
wildfire?

What are the seasonal fluctuations
in a wetland mangrove?

How do microbes affect disease and
growth of switchgrass for biofuels

What are the microbial dynamics
of soil carbon cycling?

Combine genomics with isotope tracing methods for improved
functional understanding

JGI-NERSC-KBase FICUS (Facilities Integrating Collaborations for User Science) call called out MetaHipMer

Big Data, Big Compute → Better Science
Study: assemble an 813 GB Arctic ocean dataset of
12 samples plus synthetic data from 25 reference
genomes injected at varying abundances Approaches:

• Coassembly: entire data set
• Multiassembly: lane at a time
• Dedup: remove duplicates from

multiassembly

Coassembly gives longer,
less redundant assemblies,
and is only possible with HPC
(currently only MHM)

 Hofmeyr et al. (2020). Terabase-scale metagenome coassembly with MetaHipMer. Nature Scientific Reports, 10(1)

Coassembly Finds Rare Genomes
● Low depth not recovered with

multiassembly/dedup (< 5%
genome fraction)

● Low depth mostly recovered by
coassembly (> 90% genome
fraction)

● Rare genomes are often of more
interest than abundant genomes
(which tend to be well known)

UPC++ and GASNet-EX
MHM2 is written in UPC++

● UPC++ is a C++ library for distributed memory systems that
supports one-sided communication, remote procedure calls (RPCs),
asynchronous communication and collectives

● UPC++ runs on GASNet-EX, a low-level communication layer that
provides a network-independent interface that runs on several
different hardware platforms

● Neither UPC++ nor GASNet-EX use MPI, although they are
interoperable with MPI

● MHM2 does not use MPI (nor OpenMP)
● Depending on the system, the job launcher may use MPI

Performance of GASNet-EX
● Plot shows one-sided vs two-sided

message performance
● MPI ISend/Irecv 2-sided (+) gives

lowest bandwidth
● MPI RMA (o, o) outperforms 2-sided
● GASNet-Ex (x, x) consistently

outperforms MPI (both 2-sided and
RMA)

MetaHipMer Computational Motifs
● Distributed hash tables everywhere

○ random memory access with little locality
○ communication is irregular point-to-point
○ scaling is achieved through good load balance
○ accesses generally happen separately from updates

● Computation mainly string manipulation
○ negligible floating point

● Memory intensive
○ coassembly of large datasets requires supercomputers

● Challenging for GPU optimization
○ we're working on this - for this contest, there is no GPU support

3) Alignment
Align reads to contigs

5) Scaffolding
Walk contig graph (iterate)

2) Contig Generation
Walk k-mer graph

reads

k-mers

read-contig
alignments

contig-contig
scaffolds

contigs

1 Iterate for k+s

Extract k+s-mers

Actual pipeline is more complex, simplified for purpose of presentation

2

3

4extended
contigs

5

4) Local Assembly
Extend contig ends

1) K-mer Analysis
K-mer histogram

MetaHipMer Assembly Pipeline

MetaHipMer Stage Timings

● Assembly of 822GB dataset
● Decent scaling of all stages on both NERSC Cori KNL and OLCF Summit
● Exact breakdown of timing depends on dataset as well as machine/software

(e.g. higher depth increases k-mer analysis time compared to contig
generation)

MetaHipMer Communication Patterns

● Assembly of 822GB dataset on 512 Summit nodes
● Two typical patterns of communication:

○ random point-to-point with small active messages (e.g. graph traversal in contig
generation)

○ random point-to-point with larger, aggregated messages (e.g. k-mer analysis)
● Actual number and size of messages depends on both dataset (size and

composition) and number of processes and nodes

MetaHipMer Scaling on Large Datasets
● Assemblies of increasing fraction of

7.7TB dataset
● Comparing Cori KNL, Haswell and

Summit
● Summit is about 2-3x better than

Cori KNL
● Limited Cori Haswell results (similar

to Summit)
● Up to 10x faster than version 1 on KNL
● The 7.7TB assembly on Summit is by

far the biggest metagenome ever
assembled - science to follow

● Eventual Exabiome project goal is 50TB, which will
take at least 4650 node hours on Summit, i.e. full
Summit for an hour

MetaHipMer Tuning
● Look at ISC SCC webpage for guidance

○ https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1827307543/MetaHipMer+2.0

● Basic usage (unzip the input file):
mhm2.py -r competition1.fastq --checkpoint=no

● Parameters that can be changed:
--max-kmer-store
--max-rpcs-in-flight
--pin
--shared-heap
--procs
(check https://bitbucket.org/berkeleylab/mhm2/src/master/docs/mhm_guide.md for
parameter descriptions)

● Change any UPC++ or GASNet options
○ https://gasnet.lbl.gov/dist-ex/
○ e.g. GASNET_USE_ODP or GASNET_USE_XRC

MetaHipMer Results
● Output of MHM2 is non-deterministic, but overall

statistics should not vary significantly from one run to the
next:

Assembly statistics (contig lengths >= 500)
 Number of contigs: 18360
 Total assembled length: 27651381
 Average contig depth: 7.21741
 Number of Ns/100kbp: 0.0759456 (21)
 Max. contig length: 71617
 Contig lengths:
 > 1kbp: 20642175 (74.65%)
 > 5kbp: 6289130 (22.74%)
 > 10kbp: 3476308 (12.57%)
 > 25kbp: 997631 (3.61%)
 > 50kbp: 240837 (0.87%)

???

