GPAW in ISC21 Student Cluster
Competition

Jussi Enkovaara

SSONRERE

) gy, &
-

CSC - Finnish expertise in ICT for research, education and public administration

Outline

« Overview of GPAW
« Parallelization in GPAW
o ISC21 inputs and tasks

About GPAW

« Open source software package for
atomic scale quantum mechanical
simulations

o Density-functional theory

« Supports multiple basis sets

« Implemented in Python and C programming languages
« Development started in early 2000 in Technical University of Denmark
o Currently, few hundred users and 10-20 active developers

o wiki.fysik.dtu.dk/gpaw

file:///home/jenkovaa/Nextcloud-purkki/Documents/gpaw-isc21/presentation-may-2021/wiki.fysik.dtu.dk/gpaw

CS5C

About me

« Ph.D. in Physics (Electronic structure
simulations), Helsinki University of
Technology (currently Aalto University)
2003

 Since 2005 worked at CSC - IT Center
for Science as HPC specialist

« GPAW developer since 2005

Density-functional theory

« Many-body Schrodinger equation

H(’rlar27 . TN)\Ij(rlar27 .)_E\Il(rlar27°°°7rN)
V2
H=). V1) + 5
z#] ‘T‘Z—’I’]‘

o Analytic solution for smgle electron

« Wavefunction V¥ is 3N dimensional
> 10 electrons in 10x10x10 grid — 1000°° degrees of freedom

 Density-functional theory maps the problem into a set of single-particle equations

Kohn-Sham equations

(Vz - Va((n(r)) + Vwc((n(r))) Yi(r) = eip(r);

» Set of self-consistent equations:
o Start with initial guess for density n(r)

o Solve ¥; (1)
o Calculate new n(r) and repeat until converged

 Physical approximations are contained in the exchange-correlation potential V.

Cs5C

Applications of density-functional theory

o Structure of matter (bond lengths,
equilibrium crystal structures)

« Formation energies

 Ab-initio molecular dynamics

 Optical and magnetic properties

o Electronic structure

« Major consumer of computational
resources all over world

Projector-augmented wave method

 Projector-augmented wave method allows one to work with smoother pseudo-
wave functions

V2

VH+ch+ZHG<pa| _GZ¢

/@\/@\ @ @

Smooth part Atomic corrections

Basis sets in GPAW

. Uniform real-space grid, finite-difference stencil for V*
o Convergence parameter h, smaller more accurate
o Good parallel scalability
 Plane waves
o Convergence parameter plane wave cutoff, larger more accurate
o Relies on Fast Fourier transforms
o Only periodic boundary conditions
o Parallel scalability limited by FFTs

o« Atomic orbital basis set

o Fast calculations, accuracy can be lower than with other basis sets

o Systematic convergence difficult

Python implementation

 High-level algorithms are implemented

iIn Python

e Input file is also a Python script utilizing
Atomic Simulation Environment

« Computationally intensive parts

implemented in Cand in libraries
o BLAS, FFTs, LAPACK, ScaLAPACK

» Typically, 9o - g5 % of total time spent

in Corin libraries

Number of lines

200000 -

150000 4

100000 -

50000 -

B Documentation {rst)
mm Documentation {_py)
e Tests (.py)

B Python-code [.py)
mm C-code (c, .h)

mmm Fortran-code

2006 2008 2010 2012 2014 016 2018

Parallelization in GPAW

« Main parallelization scheme MP
o MPI calls both from C and from Python

« Complementary OpenMP parallelization
o Can be beneficial in supercomputers with many cores per node

> Not fully optimized yet
> Only real-space grids and atomic orbital basis

o Multithreaded BLAS required for good performance
o MPI library with MPI_THREAD_MULTIPLE support required

Parallelization in GPAW

» Parallelization over several degrees of freedoom

» k-points and spin
o periodic and magnetic systems

o nearly trivial parallelization
« Domain decomposition

o real-space grids and atomic orbital basis

Finite difference +

o only local communication Laplacian

o Parallelization over plane waves

o all-to-all communication

Parallelization in GPAW

e Para
e Para

le
le

o Can

ization over several degrees of freedoom
ization over electronic states

be beneficial when domain decomposition or parallelization over plane waves no

longer scales

o typically does not happen until using several hundreds of CPU cores

« Dense matrix diagonalizations with ScaLAPACK

o with real-space and plane wave basis beneficially normally only for cases with over

1000 states

o atomic orbital basis can benefit already with smaller systems

Installing GPAW

o If all non-Python requirements are met, GPAW can in principle be installed directly
from PyPI (Python package index)

e INn1SC21 SCC one should install version 21.1.0 from source:

git clone -b 21.1.0 https://gitlab.com/gpaw/gpaw.git

« Normally, one wants to set at minimum the BLAS library in siteconfig.py:

libraries = ['openblas']
library_dirs = ['/some/path/where/openblas/is/1ib"']

This will add -L/some/path/where/openblas/is/1lib -lopenblas to link line
when building GPAW

Installing GPAW

By default, mpicc and options used for the Python interpreter are used

« Another compiler and additional flags can be set also in siteconfig.py
e See |SC21 SCC wiki or GPAW wiki for more details.

« Once installation is complete and PATH etc. are set, PAW datasets can be
installed as

gpaw install-data <dir>

 Simple test calculation can then be performed with

gpaw test

« GPAW contains also a more extensive test set when developing code, see GPAW
wiki for details

https://wiki.fysik.dtu.dk/gpaw/devel/testing.html

Running GPAW

« GPAW input files are Python scripts
o Complex workflows can be programmed in the input file itself

» Syntactic correctness of input file and default parallelization settings with N
processes can be checked with a dry-run

gpaw python --dry-run=N input.py

> Note that output file defined in the input will be overwritten

« The way to start parallel calculations depends on the underlying batch job

system and MPI installation (mpiexec, srun, ...), e.g. with mpiexec

set PATH, PYTHONUSERBASE or PYTHONPATH etc.
mpiexec -n 40 gpaw python input.py

A look into GPAW input

Cs5C

from ase.build import bulk
from gpaw import GPAW
from gpaw.mpi import world

atoms = bulk('Si', cubic=True)

calc = GPAW(h=0.2,
kpts=(3,3,3),
xc="'PBE',
txt=outfile,
)

atoms.set_calculator(calc)

e = atoms.get_potential_energy()

1f world.rank ==
print("Energy:", e)

Atomic simulation env tools

Information about parallelization

Accuracy of real space grid
K-point mesh (only with periodic systems
Exchange-correlation approximation

A look into GPAW output

Total number of cores used: 16
Parallelization over k-points: 4
Domain decomposition: 2 x 2 x 1

1ter: 1 09:17:27 -43.220046 1
1ter: 2 09:17:28 +0.03 -0.82 -43.352201]
iter: 3 09:17:29 -0.37 -0.82 -43.554556]

Timing incl excl
Hamiltonian: 0.279 0.000 0.0% |
SCF-cycle: 30.285 1.049 3.2% ||
Davidson: 16.935 9.209 27.7% |----------
Apply hamiltonian: 1.217 1.217 3.7% ||
Subspace diag: 1.730 0.013 0.0%
calc_h_matrix: 1.022 0.118 0.4%

Tasks in competition: building and running

 Build GPAW in the two clusters
o Investigate and discuss the scalability in

the two clusters

e Input case copper.py
o Copper filament, periodic in z-direction
o Real-space basis, k-points in z-
dimension
o Limited number of self-consistent
iterations

« No modifications to the input

e e

Tasks in competition: visualization

« Electron localization function (ELF) is a

measure of the likelihood of finding an
electron in the neighborhood space of a
reference electron

« Can be usedininterpreting and
visualizing bonding

 Provided input nanoribbon. py writes
out the 3D ELF (together with the
atomic positions) of graphene

nanoribbon with Au adsorbate
« Make a visualization of ELF

Tasks in competition: profiling

» Use IPM profiler to profile the input copper.py over 4 node run.

o (There s also input copper-profile.py which uses Python standard profiler and

writes information into separate file for each MPI task. The profiles can be

investigated with tools in Python standard library)

https://docs.python.org/3/library/profile.html

Tasks in competition: performance tuning

 Try to maximize the performance of copper.py
» You can try different compilers, compiler options, libraries
» Any modifications to source code are allowed (as long as the accuracy check in the

Input passes)
o modifications need to be made available

« Non-default parallelization options are allowed, i.e. use of OpenMP threading

and adding parallel keyword into input, e.q.

args = {'h': h,

"txt': txt,
'parallel’ : {'band' : 2}
¥

https://wiki.fysik.dtu.dk/gpaw/documentation/parallel_runs/parallel_runs.html#manual-parallelization-types

Bonus task: bug fix for scalapack diagonalization

« Thereis a bugin GPAW's Scalapack functionality:
https://gitlab.com/gpaw/gpaw/-/issues/269

» Try to fix the bug
» Note that GPAW needs to be built with ScaLAPACK support for this task

https://gitlab.com/gpaw/gpaw/-/issues/269

Coding challenge

« GPAW is used also in Coding Challenge for analyzingMPI_Alltoallv patterns

o Input file si-divacancy.py
o Divacancy in Si

o Plane wave basis

Questions ?

