
GPAW in ISC21 Student ClusterGPAW in ISC21 Student Cluster
CompetitionCompetition
Jussi Enkovaara

OutlineOutline

Overview of GPAW
Parallelization in GPAW
ISC21 inputs and tasks

Open source software package for
atomic scale quantum mechanical
simulations
Density-functional theory
Supports multiple basis sets

About GPAWAbout GPAW

Implemented in Python and C programming languages
Development started in early 2000 in Technical University of Denmark
Currently, few hundred users and 10-20 active developers
wiki.fysik.dtu.dk/gpaw

file:///home/jenkovaa/Nextcloud-purkki/Documents/gpaw-isc21/presentation-may-2021/wiki.fysik.dtu.dk/gpaw

Ph.D. in Physics (Electronic structure
simulations), Helsinki University of
Technology (currently Aalto University)
2003
Since 2005 worked at CSC - IT Center
for Science as HPC specialist
GPAW developer since 2005

About meAbout me

Density-functional theoryDensity-functional theory

Many-body Schrödinger equation

Analytic solution for single electron
Wavefunction is 3N dimensional

10 electrons in 10x10x10 grid degrees of freedom

Density-functional theory maps the problem into a set of single-particle equations

H(, , . . . ,)Ψ(, , . . . ,) = EΨ(, , . . . ,)r1 r2 rN r1 r2 rN r1 r2 rN

H = − + (r) +∑
i

∇2
i

2
Vext

1

2
∑
i≠j

e2

| − |ri rj

Ψ
→ 100030

Kohn-Sham equationsKohn-Sham equations

Set of self-consistent equations:
Start with initial guess for density
Solve
Calculate new and repeat until converged

Physical approximations are contained in the exchange-correlation potential

(− + ((n(r)) + ((n(r))) (r) = ψ(r
∇2

2
VH Vxc ψi ϵi)i

n(r) = | (r)∑
i

ψi]2

n(r)

(r)ψi

n(r)

Vxc

Structure of matter (bond lengths,
equilibrium crystal structures)
Formation energies
Ab-initio molecular dynamics
Optical and magnetic properties
Electronic structure
...
Major consumer of computational
resources all over world

Applications of density-functional theoryApplications of density-functional theory

Projector-augmented wave methodProjector-augmented wave method

Projector-augmented wave method allows one to work with smoother pseudo-
wave functions

(− + + + < |) (r) = (r
∇2

2
VH Vxc ∑

a

H a p~a ψ
~

i ϵiψ
~

)i

Basis sets in GPAWBasis sets in GPAW

Uniform real-space grid, finite-difference stencil for
Convergence parameter , smaller more accurate
Good parallel scalability

Plane waves
Convergence parameter plane wave cutoff, larger more accurate
Relies on Fast Fourier transforms
Only periodic boundary conditions
Parallel scalability limited by FFTs

Atomic orbital basis set
Fast calculations, accuracy can be lower than with other basis sets
Systematic convergence difficult

∇2

h

High-level algorithms are implemented
in Python
Input file is also a Python script utilizing
Atomic Simulation Environment
Computationally intensive parts
implemented in C and in libraries

BLAS, FFTs, LAPACK, ScaLAPACK

Typically, 90 - 95 % of total time spent
in C or in libraries

Python implementationPython implementation

Parallelization in GPAWParallelization in GPAW

Main parallelization scheme MPI
MPI calls both from C and from Python

Complementary OpenMP parallelization
Can be beneficial in supercomputers with many cores per node
Not fully optimized yet
Only real-space grids and atomic orbital basis
Multithreaded BLAS required for good performance
MPI library with MPI_THREAD_MULTIPLE support required

k-points and spin
periodic and magnetic systems
nearly trivial parallelization

Domain decomposition
real-space grids and atomic orbital basis
only local communication

Parallelization over plane waves
all-to-all communication

Parallelization in GPAWParallelization in GPAW

Parallelization over several degrees of freedoom

Parallelization in GPAWParallelization in GPAW

Parallelization over several degrees of freedoom
Parallelization over electronic states

can be beneficial when domain decomposition or parallelization over plane waves no
longer scales
typically does not happen until using several hundreds of CPU cores

Dense matrix diagonalizations with ScaLAPACK
with real-space and plane wave basis beneficially normally only for cases with over
1000 states
atomic orbital basis can benefit already with smaller systems

Installing GPAWInstalling GPAW

If all non-Python requirements are met, GPAW can in principle be installed directly
from PyPI (Python package index)

In ISC21 SCC one should install version 21.1.0 from source:
git clone -b 21.1.0 https://gitlab.com/gpaw/gpaw.git

Normally, one wants to set at minimum the BLAS library in siteconfig.py :
libraries = ['openblas']

library_dirs = ['/some/path/where/openblas/is/lib']

This will add -L/some/path/where/openblas/is/lib -lopenblas to link line
when building GPAW

Installing GPAWInstalling GPAW

By default, mpicc and options used for the Python interpreter are used
Another compiler and additional flags can be set also in siteconfig.py
See ISC21 SCC wiki or GPAW wiki for more details.

Once installation is complete and PATH etc. are set, PAW datasets can be
installed as

gpaw install-data <dir>

Simple test calculation can then be performed with
gpaw test

GPAW contains also a more extensive test set when developing code, see
 for details

GPAW
wiki

https://wiki.fysik.dtu.dk/gpaw/devel/testing.html

Running GPAWRunning GPAW

GPAW input files are Python scripts
Complex workflows can be programmed in the input file itself

Syntactic correctness of input file and default parallelization settings with N
processes can be checked with a dry-run

gpaw python --dry-run=N input.py

Note that output file defined in the input will be overwritten

The way to start parallel calculations depends on the underlying batch job
system and MPI installation (mpiexec , srun , ...), e.g. with mpiexec

set PATH, PYTHONUSERBASE or PYTHONPATH etc.

mpiexec -n 40 gpaw python input.py

A look into GPAW inputA look into GPAW input

from ase.build import bulk # Atomic simulation env tools

from gpaw import GPAW

from gpaw.mpi import world # Information about parallelization

atoms = bulk('Si', cubic=True)

calc = GPAW(h=0.2, # Accuracy of real space grid

 kpts=(3,3,3), # K-point mesh (only with periodic systems

 xc='PBE', # Exchange-correlation approximation

 txt=outfile,

)

atoms.set_calculator(calc)

e = atoms.get_potential_energy()

if world.rank == 0:

 print("Energy:", e)

A look into GPAW outputA look into GPAW output

...

Total number of cores used: 16

Parallelization over k-points: 4

Domain decomposition: 2 x 2 x 1

...

iter: 1 09:17:27 -43.220046 1

iter: 2 09:17:28 +0.03 -0.82 -43.352201 1

iter: 3 09:17:29 -0.37 -0.82 -43.554556 1

...

Timing: incl. excl.

Hamiltonian: 0.279 0.000 0.0% |

...

SCF-cycle: 30.285 1.049 3.2% ||

 Davidson: 16.935 9.209 27.7% |----------|

 Apply hamiltonian: 1.217 1.217 3.7% ||

 Subspace diag: 1.730 0.013 0.0% |

 calc_h_matrix: 1.022 0.118 0.4% |

Build GPAW in the two clusters
Investigate and discuss the scalability in
the two clusters
Input case copper.py

Copper filament, periodic in z-direction
Real-space basis, k-points in z-
dimension
Limited number of self-consistent
iterations

No modifications to the input

Tasks in competition: building and runningTasks in competition: building and running

Electron localization function (ELF) is a
measure of the likelihood of finding an
electron in the neighborhood space of a
reference electron
Can be used in interpreting and
visualizing bonding
Provided input nanoribbon.py writes
out the 3D ELF (together with the
atomic positions) of graphene
nanoribbon with Au adsorbate
Make a visualization of ELF

Tasks in competition: visualizationTasks in competition: visualization

Tasks in competition: profilingTasks in competition: profiling

Use IPM profiler to profile the input copper.py over 4 node run.
(There is also input copper-profile.py which uses Python standard profiler and
writes information into separate file for each MPI task. The profiles can be
investigated with)tools in Python standard library

https://docs.python.org/3/library/profile.html

Tasks in competition: performance tuningTasks in competition: performance tuning

Try to maximize the performance of copper.py
You can try different compilers, compiler options, libraries
Any modifications to source code are allowed (as long as the accuracy check in the
input passes)

modifications need to be made available

Non-default are allowed, i.e. use of OpenMP threading
and adding parallel keyword into input, e.g.

args = {'h': h,

 ...

 'txt': txt,

 'parallel' : {'band' : 2}

 }

parallelization options

https://wiki.fysik.dtu.dk/gpaw/documentation/parallel_runs/parallel_runs.html#manual-parallelization-types

Bonus task: bug fix for scalapack diagonalizationBonus task: bug fix for scalapack diagonalization

There is a bug in GPAW's Scalapack functionality:

Try to fix the bug
Note that GPAW needs to be built with ScaLAPACK support for this task

https://gitlab.com/gpaw/gpaw/-/issues/269

https://gitlab.com/gpaw/gpaw/-/issues/269

Coding challengeCoding challenge

GPAW is used also in Coding Challenge for analyzing MPI_Alltoallv patterns
Input file si-divacancy.py

Divacancy in Si
Plane wave basis

Questions ?Questions ?

