
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.. SAND NO. SAND2021-5073 PE

LAMMPS Tutorial
Stan Moore

ISC 2021 Student Cluster Competition

§ Stan Moore
§ One of the LAMMPS code developers at Sandia National Laboratories

in Albuquerque, New Mexico
§ Been at Sandia for ~9 years
§ Main developer of the KOKKOS package in LAMMPS (runs on GPUs

and multi-core CPUs)
§ Expertise in long-range electrostatics
§ PhD in Chemical Engineering, dissertation on molecular dynamics

method development for predicting chemical potential

About Me

2

Molecular Dynamics (MD)

§ Molecular Dynamics models atom behavior classically by
using Newton’s laws of motions

§ Normally use an empirical expression for forces (does not
include electrons)

§ Atom positions à forces à velocities à new positions
§ Spherical cutoff gives O(N) linear scaling, can simulate billions

of atoms on a supercomputer

3

Simple Example: Crack

4

§ Domain decomposition: each processor owns a portion of the
simulation domain and atoms therein

MPI Parallelization Approach

5

proc 1 proc 2

proc 3 proc 4

§ The processor domain is also extended to include needed
ghost atoms (copies of atoms located on other processors)

§ Communicated via MPI (message passing interface)

Ghost Atoms

6

proc 1

local atoms

ghost atoms

Neighbor Lists

§ Neighbor lists are a list of neighboring atoms within the
interaction cutoff + skin for each central atom

§ Extra skin allows lists to be built less often

7

cutoff

Newton Option

§ Newton flag to off means that if two interacting atoms are on
different processors, both processors compute their
interaction and the resulting force information is not
communicated

§ Setting the newton flag to on saves computation but
increases communication

§ Performance depends on problem size, force cutoff lengths, a
machine’s compute/communication ratio, and how many
processors are being used

§ Newton off typically better for GPUs

8

newton on #default
newton off

Half Neighbor List

§ With newton flag on, each pair is stored only once (usually
better for CPUs), requires atomic operations for thread-safety

9

Full Neighbor List

§ Each pair stored twice which doubles computation but
reduces communication and doesn’t require atomic
operations for thread safety (can be faster on GPUs)

10

Molecular Topology

11

§ Bonds: constrained length between two atoms
§ Angles: constrained angle between three atoms
§ Dihedrals: interactions between quadruplets of atoms
§ Impropers: “improper” interactions between quadruplets of

atoms

bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic

Fix Shake

12

§ Applies bond and angle constraints to specified bonds and
angles in the simulation

§ Typically enables a longer timestep

fix 1 all shake 0.0001 5 0 m 1.0 a 232

Long-Range Electrostatics

§ Truncation doesn’t work well for charged systems due to
long-ranged nature of Coulombic interactions

§ Use Kspace style to add long-range electrostatics. PPPM
method usually fastest, uses FFTs

§ Specify a relative accuracy (i.e. 1e-4)
§ Use pair_style *coul/long such as
lj/cut/coul/long instead of *coul/cut

§ Can vary Coulomb cutoff length and get the same answer

13

pair_style lj/cut/coul/long 10.0
kspace_style pppm 1e-4

Basic MD Timestep

§ During each timestep (without neighborlist build):

1. Initial integrate
2. MPI communication
3. Compute forces (pair, bonds, kspace, etc.)
4. Additional MPI communication (if newton flag on)
5. Final integrate
6. Output (if requested on this timestep)

*Computation of diagnostics (fixes or computes) can be
scattered throughout the timestep

14

LAMMPS Files

§ Input file: text file with LAMMPS commands used to run a
simulation

§ Log file: text file with thermodynamic output from simulation
§ Dump file: snapshot of atom properties, i.e. atom forces
§ Restart file: binary checkpoint file with data needed to restart

simulation
§ Data file: text file that can be used to start or restart

simulation

15

Downloading LAMMPS

§ Github (https://github.com/lammps/lammps)
§ https://github.com/lammps/lammps/releases
§ Clone or download button, then download zip file
§ git clone … (beyond this tutorial)

§ LAMMPS Website (http://lammps.sandia.gov)
§ Go to “download” link
§ Download gzipped tar file

§ Stable version: more testing
§ Development version: latest features and bug fixes

16

https://github.com/lammps/lammps
https://github.com/lammps/lammps/releases
http://lammps.sandia.gov/

Compiling LAMMPS

§ https://lammps.sandia.gov/doc/Build.html
§ Need C++ compiler (GNU, Intel, Clang, nvcc)
§ Need MPI library, or can use the “STUBS” library
§ Many Makefiles in src/MAKE
§ LAMMPS also has CMake interface

17

https://lammps.sandia.gov/doc/Build.html

Running LAMMPS

§ https://lammps.sandia.gov/doc/Run_basics.html
§ Basic syntax: [executable] -in [input_script]
§ In serial:

./lmp_serial -in in.lj

§ In parallel:
mpirun -np 2 lmp_mpi -in in.lj

§ Many other command line options, see
https://lammps.sandia.gov/doc/Run_options.html

18

https://lammps.sandia.gov/doc/Run_basics.html
https://lammps.sandia.gov/doc/Run_options.html

Optional Packages

§ https://lammps.sandia.gov/doc/Packages_standard.html
§ LAMMPS is very modular and has several optional packages
§ Rhodopsin benchmark needs MOLECULE, KSPACE, RIGID

packages installed

Traditional Make:
make yes-molecule

make no-molecule

CMAKE:
-D PKG_MOLECULE=yes

19

https://lammps.sandia.gov/doc/Packages_standard.html

Accelerator Packages

§ https://lammps.sandia.gov/doc/Speed_packages.html
§ Some hardware components like GPUs, and multithreaded

CPUs require special code (i.e. OpenMP, CUDA) to fully take
advantage of the hardware

§ LAMMPS has 5 accelerator packages:
§ USER-OMP
§ USER-INTEL
§ OPT
§ GPU
§ KOKKOS

20

https://lammps.sandia.gov/doc/Speed_packages.html

OPT Package

§ https://lammps.sandia.gov/doc/Speed_opt.html
§ Methods rewritten in C++ templated form to reduce the

overhead due to if tests and other conditional code
§ Code also vectorizes better than the regular CPU version
§ Contains 9 pair styles including Lennard-Jones
§ No GPU support

21

https://lammps.sandia.gov/doc/Speed_opt.html

Running OPT Package

§ Compile LAMMPS with OPT package
§ Run with 8 MPI: mpiexec -np 8 ./lmp_exe -in
in.lj -sf opt

§ -sf opt is the suffix command: automatically appends
/opt onto anything it can

§ For example, pair_style lj/cut automatically
becomes pair_style lj/cut/opt (no changes to
input file needed)

§ https://lammps.sandia.gov/doc/suffix.html

22

https://lammps.sandia.gov/doc/suffix.html

USER-OMP Package

§ https://lammps.sandia.gov/doc/Speed_omp.html
§ Uses OpenMP to enable multithreading on CPUs
§ MPI parallelization in LAMMPS is almost always more

effective than OpenMP in USER-OMP on CPUs
§ When running with MPI across multi-core nodes, MPI often

suffers from communication bottlenecks and using
MPI+OpenMP per node can be faster

§ The more nodes per job and the more cores per node, the
more pronounced the bottleneck and the larger the benefit
from MPI+OpenMP

23

https://lammps.sandia.gov/doc/Speed_omp.html

Running USER-OMP Package

§ Compile LAMMPS with USER-OMP package
§ Run with 2 MPI and 2 OpenMP threads:

export OMP_NUM_THREADS=2

mpiexec -np 2 ./lmp_exe –in in.lj -sf omp

24

USER-INTEL Package

§ https://lammps.sandia.gov/doc/Speed_intel.html
§ Allows code to vectorize and run well on Intel CPUs (with or

without OpenMP threading)
§ Can also be used in conjunction with the USER-OMP package
§ Normally best performance out of all accelerator packages for

CPUs

25

https://lammps.sandia.gov/doc/Speed_intel.html

Running USER-INTEL Package

§ Compile LAMMPS with USER-INTEL package
§ To run using 2 MPI and 2 threads on a Intel CPU:

mpiexec -np 2 ./lmp_exe -in in.lj -pk intel
0 omp 2 mode double -sf intel

§ -pk is the package command that sets package options, see
https://lammps.sandia.gov/doc/package.html

§ See also
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWO
RKS/pages/1928986641/LAMMPS

26

https://lammps.sandia.gov/doc/package.html
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1928986641/LAMMPS

GPU Package

§ https://lammps.sandia.gov/doc/Speed_gpu.html
§ Designed for one or more GPUs coupled to many CPU cores
§ Only pair runs on GPU, fixes/bonds/computes run on CPU
§ Atom-based data (e.g. coordinates, forces) move back and

forth between the CPU(s) and GPU every timestep
§ Asynchronous force computations can be performed

simultaneously on the CPU(s) and GPU if using Kspace
§ Provides NVIDIA and more general OpenCL support

27

https://lammps.sandia.gov/doc/Speed_gpu.html

Running GPU Package

§ GPU library is found in lib/gpu
§ Compile LAMMPS with GPU package
§ Run with 16 MPI and 4 GPUs: mpiexec -np 16
./lmp_exe -in in.lj -sf gpu -pk gpu 4

§ Best to use CUDA MPS (Multi-Process Service) if using
multiple MPI ranks per GPU

§ Automatically overlaps pair-style on GPU with Kspace on CPU

28

Kokkos

§ Abstraction layer between programmer and next-generation
platforms

§ Allows the same C++ code to run on multiple hardware (GPU,
CPU)

§ Kokkos consists of two main parts:
1. Parallel dispatch—threaded kernels are launched and mapped onto

backend languages such as CUDA or OpenMP
2. Kokkos views—polymorphic memory layouts that can be optimized

for a specific hardware

§ Used on top of existing MPI parallelization (MPI + X)
§ See https://github.com/kokkos/kokkos/wiki for more info

29

https://github.com/kokkos/kokkos/wiki

LAMMPS KOKKOS Package

§ https://lammps.sandia.gov/doc/Speed_kokkos.html
§ Supports OpenMP and GPUs
§ Designed so that everything (pair, fixes, computes, etc.) runs

on the GPU, minimal data transfer from GPU to CPU
§ Package options can toggle full and half neighbor list, newton

on/off, etc.
-pk kokkos newton on neigh half

§ https://lammps.sandia.gov/doc/package.html

30

https://lammps.sandia.gov/doc/Speed_kokkos.html
https://lammps.sandia.gov/doc/package.html

Running Kokkos Package

§ Compile LAMMPS with the KOKKOS package
§ Run with 4 MPI and 4 GPUs: mpiexec -np 4
./lmp_exe -in in.lj -k on g 4 -sf kk

§ Run with 4 OpenMP threads: ./lmp_exe -in in.lj -k
on t 4 -sf kk

31

Overlapping with Kokkos

§ https://lammps.sandia.gov/doc/Speed_kokkos.html
§ Possible to overlap pair-style on GPU with Kspace, bonds, etc.

on CPU
§ Use –pk kokkos pair/only on to run only pair-style

on GPU, everything else on CPU (like GPU package)
§ Can manually specify /kk/host suffix to run on CPU,
/kk/device suffix to run on GPU

§ May need to compile with --default-stream per-
thread flag to achieve overlap

§ Can compile with both Cuda and OpenMP backends and run
with OpenMP threading on CPU:

-k on t 4 g 2 –sf kk
32

https://lammps.sandia.gov/doc/Speed_kokkos.html

FFT Libraries

§ https://lammps.sandia.gov/doc/Build_settings.html#fft
§ LAMMPS needs FFT library for PPPM Kspace method
§ The KISS FFT library is included with LAMMPS but other

libraries can be faster
§ KISS, FFTW, MKL, cuFFT options are supported

33

https://lammps.sandia.gov/doc/Build_settings.html

Processor and Thread Affinity

§ Use mpirun command-line arguments (e.g. --bind-to
core) to control how MPI tasks and threads are assigned to
nodes and cores

§ Also use OpenMP variables such as OMP_PROC_BIND and
OMP_PLACES

§ One must also pay attention to NUMA bindings between
tasks, cores, and GPUs. For example, for a dual-socket system,
MPI tasks driving GPUs should be on the same socket as the
GPU

34

Lennard-Jones

§ Simple pair-wise model
§ Similar to argon liquid/gas

35

Rhodopsin

§ Protein found in eyes
(https://en.wikipedia.org/wiki/Rhodopsin)

§ Model includes molecular topology (bonds, angles, etc.)
§ Uses long-range electrostatics
§ Requires KSPACE, MOLECULE, and RIGID packages

36

https://en.wikipedia.org/wiki/Rhodopsin

§ On GPUs, timing breakdown won’t be accurate without
CUDA_LAUNCH_BLOCKING=1 (but will slow down simulation
and prevent overlap)

Measuring performance

37

Tuning Rules

§ What is not allowed: basically anything that changes the
simulation results

§ What is allowed: any system or LAMMPS change that makes
the simulation go faster without changing the results (half vs
full neighbor list, newton on/off, etc.)

§ For a full list see:
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWO
RKS/pages/1928986641/LAMMPS

38

https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1928986641/LAMMPS

Visualization Resources

§ LAMMPS “dump image” command:
https://lammps.sandia.gov/doc/dump_image.html
(uncomment line in input files)

§ VMD: https://www.ks.uiuc.edu/Research/vmd/
§ OVITO: https://www.ovito.org/about/ovito-pro/

39

https://lammps.sandia.gov/doc/dump_image.html
https://www.ks.uiuc.edu/Research/vmd/
https://www.ovito.org/about/ovito-pro/

Getting Help

§ Look at LAMMPS documentation, latest version here:
http://lammps.sandia.gov/doc/Manual.html)

§ Search mail list archives here:
https://sourceforge.net/p/lammps/mailman/lammps-users

§ Subscribe to the LAMMPS mail list:
http://lammps.sandia.gov/mail.html and then post questions

§ Look at mail list posting guidelines first:
http://lammps.sandia.gov/guidelines.html

40

http://lammps.sandia.gov/doc/Manual.html
https://sourceforge.net/p/lammps/mailman/lammps-users
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/guidelines.html

Questions?

41

