
Avril 2021

COLLECTIVE PROFILER

2

MOTIVATION

Project was initiated late spring 2020

Tool specifically to investigate the behavior of MPI collective operations (this is not a product)

MPI standard: https://mpi-forum.org

Currently focusing on alltoallv; support for alltoall under development

Be able to gather data about MPI collective operations to analyze performance bottlenecks

Without access to the application code

On any execution platform, even with limited access

With a large count of ranks and nodes

With a toolchain to analyze the data and help us understand how the collectives behave

Git repository: https://github.com/gvallee/collective_profiler

Why a new profiler?

https://mpi-forum.org/
https://github.com/gvallee/collective_profiler

3

ARCHITECTURE OVERVIEW

Two separate parts integrated together in the repository

The profiler itself: C/PMPI code in the src directory; a set of shared libraries used when executing MPI applications

The post-mortem analysis tool: Golang code in the tools directory; a set of commands to analyze and investigate profiles

README.md file provides information about how to install and use both

A few commands overview (more details in the coming slides)

make compiles the profiler and the postmortem analysis tool (MPI and Golang needs to be already installed)

mpirun –x LD_PRELOAD=liballtoallv_counts.so ./app.exe creates a section of the profile

profile –dir ~/data/alltoallv_profile goes through the profile and compiles data and statistics

4

DESIGN AND IMPLEMENTATION CONSTRAINTS

The design and implementation is based on the following constraints

Must support ~5,000 MPI ranks

Must support ~1,000,000 alltoallv calls

These scales require to choose and implement algorithms and data structures very carefully

All contributions are expected to respect these constraints

A validation tool is available to help: tools/cmd/validate/validate

Separate command and infrastructure because it goes beyond unit testing: unit testing + end-to-end testing

If the validation passes and the code does not create maintenance issues, it gets into the repository

If issues are discovered after the code has been included, the validation process is extended to detect these issues and avoid future
regressions

5

CREATION OF A ALLTOALLV PROFILE

Profiles are composed of 4 different types of data: counts, backtraces, rank locations, timings (both late arrival and
time spent executing the collective)

5 different shared libraries: liballtoallv_counts.so, liballtoallv_backtrace.so, liballtoallv_location.so,
liballtoallv_late_arrival.so, liballtoallv_exec_timings.so

Having separate shared libraries minimizes interferences between different aspects of profiling

Give the opportunity to optimize the gathering of specific data (out-of-scope of this presentation), e.g., low-memory systems

You will need data from profiling the applications with the 5 shared libraries

Multiple data formats available that are designed to minimize issues due to our constraints (e.g., number of files,
size of files). Default format is suitable in most cases.

Please read the README.md file for more details

6

PROFILES

Counts: please refer to the MPI standard

Location: on which node are ranks of a communicator located?

Useful when trying to know if the network capacity to a node is entirely utilized

Can be used to investigate better placement of ranks

Backtrace: application context in which the alltoallv operations are called

Extract useful information even without access to the source code

Help understand the context of under-performing alltoallv operations

Concept of counts, location and backtraces

7

PROFILES

Late arrivals

Based on what each rank is computing, some ranks may start alltoallv operations late compared to
others

Early ranks need to wait for the late ranks

Create imbalance that are often greatly degrading the performance of alltoallv operations

Execution times

Time actively spent in the alltoallv operation

Use a specific methodology to differentiate delays and execution time (out-of-scope of this
presentation)

Concept of late arrival and execution times

Rank n Rank m

Compute phase

Alltoallv operaiton

Rank n is always arriving late in
alltoallv operations

8

POST-MORTEM ANALYSIS

Things to keep in mind

The tool’s APIs, algorithms and data structures heavily rely on Golang maps: efficient both in terms of execution time (good access
complexity) and memory usage (memory pointer within the Golang runtime)

Analyzing large datasets may require a system with a decent amount of resources (CPU and memory)

Two commands are of interest for your project: profile and webui

Respectively in ./tools/cmd/profile and ./tools/cmd/webui

Default arguments should be adequate

More details in the next slides

Overview

9

POST-MORTEM ANALYSIS

MPI collectives involve all ranks in the communicator that is used

But for alltoallv, the amount of data sent/received by each rank is defined by the counts

A typical issue is that developers use alltoallv operations to implement data exchange between a small subset of
the ranks

The concept of pattern captures how many ranks are actively communicating

1-to-1: only a few ranks are exchanging data

1-to-n: a few ranks sent data to many other ranks

n-to-1: many ranks send data to a few ranks

n-to-m: most of the ranks exchange data

Patterns therefore focus on the number of ranks that are actively involved

Concept of patterns

10

POST-MORTEM ANALYSIS

Based on the counts and the datatype defined during the alltoallv operation, we know the exact amount of data
exchanged between ranks

The concept of heat map captures how much data is exchanged, either between rank (rank-centric heat map) or
hosts (host-centric heat map)

Heat maps therefore focus on the amount of data that is exchanged

Concept of heat map

11

POST-MORTEM ANALYSIS

Tool to visualize and investigate profiles: tools/cmd/webui/webui

Requires gnuplot

Key features

Automatically performs missing post-mortem analysis when required, including plots

List of all the calls and possibility to select a call to see details

Display patterns that has been detected

Its layout still has limitations, it is still evolving (e.g., no support for multi-communicator profiles)

Demo (if we have time)

Webui

12

THE CODING CHALLENGE TASKS

Understand MPI_alltoallv calls - write a simple program that shows differences between two balanced and
unbalanced patterns

Get to know the profiler, be able to run it

Pattern Display

Create a map of patterns

Use more colors for the patterns with different possible formulas

Find a way to use it in a real application, in our case WRF (3 domain input, already available)

Bonus tasks

Find ways to reduce the running time of the profiler

Find ways to reduce disk space of the profiler

13

WORKING MODE

We suggest that each team use a cloned environment for this project and add Geoff V. to review the code when
ready. The cloned environment can be private.

The best codes will be merged into the master after being reviewed

