INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
Published online 30 November 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/f1d.2480

Incompact3d: A powerful tool to tackle turbulence problems with
up to O(10°) computational cores

Sylvain Laizet"* T and Ning Li?

YTurbulence, Mixing and Flow Control Group, Department of Aeronautics, Imperial College London,
London SW7 2AZ, U.K.
2Numerical Algorithms Group (NAG), Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK.

SUMMARY

Understanding the nature of complex turbulent flows remains one of the most challenging problems
in classical physics. Significant progress has been made recently using high performance computing,
and computational fluid dynamics is now a credible alternative to experiments and theories in order to
understand the rich physics of turbulence. In this paper, we present an efficient numerical tool called
Incompact3d that can be coupled with massive parallel platforms in order to simulate turbulence problems

with as much complexity as possible, using up to O(10°) computational cores by means of direct numerical
simulation (DNS). DNS is the simplest approach conceptually to investigate turbulence, featuring the
highest temporal and spatial accuracy and it requires extraordinary powerful resources. This paper is an
extension of Laizet et al. (Comput. Fluids 2010; 39(3):471-484) where the authors proposed a strategy
to run DNS with up to 1024 computational cores. Copyright © 2010 John Wiley & Sons, Ltd.

Received 24 June 2010; Revised 22 September 2010; Accepted 9 October 2010

KEY WORDS: high performance computing; direct numerical simulation; computational fluid dynamics

1. INTRODUCTION

With the recent impressive developments in computer technology, high performance computing
(HPC) has entered the reality of petascale computing (systems capable of 10! operations per
second) with far-reaching consequences for scientific research. HPC is expected to open the doors to
solving highly complex turbulence problems that were until very recently beyond our imagination.
Characterized by complex, disorderly motions over a wide range of scales in time and space,
turbulence is a grand challenge question that cuts across numerous disciplinary boundaries, from
the science of atmospheric phenomena, to the physics of combustion as an energy source for cars
or/and jet engines. Many generations of scientists have struggled to understand both the physical
essence and the mathematical structure of turbulence.

In the last 50 years, some progress has been made in the understanding of the turbulence problem,
thanks to increasingly more complex experiments using advanced and sophisticated techniques,
and, of course, thanks to the introduction and widespread use of numerical simulations. The recent
unprecedented developments in computer technology has had and will have a strong impact on the
turbulence research, especially on three aspects: direct numerical simulation (DNS) of idealized
turbulence, increasingly sophisticated engineering models of turbulence and the extraordinary
enhancement in the quality and quantity of experimental data achieved thanks to computer storage

*Correspondence to: Sylvain Laizet, Turbulence, Mixing and Flow Control Group, Department of Aeronautics,
Imperial College London, London SW7 2AZ, U.K.
TE-mail: sylvain.laizet@gmail.com

Copyright © 2010 John Wiley & Sons, Ltd.

1736 S. LAIZET AND N. LI

and computer post-treatment. John Von Neumann, noted in a 1949 review of turbulence that ‘there
might be some hope to break the deadlock by extensive, but well-planned, computational efforts’.

From a fundamental point of view, DNS of idealized isotropic, homogeneous turbulence has
been revolutionary in its impact on turbulence research because of the possibility to simulate and
display the full 3D velocity field without any modelling. One of the most challenging aspects of
the turbulence is that the velocity fluctuates over a large range of coupled spatial and temporal
scales. If we want to understand the turbulence problem without introducing any bias through
numerical methods, it is important to use the most accurate computational approach: DNS. Unfor-
tunately, the computational cost of DNS, even for idealized turbulent flows, is very high, especially
when increasing the Reynolds number, as a result of the non-linearity and the non-locality of the
Navier—Stokes equations. Furthermore, for flows with relatively complex geometries at the rele-
vant Reynolds numbers (i.e. representative of real situations), the computational resources required
by DNS often drastically exceed the capacity of the most powerful massive parallel platforms.
In general, because the entire range of length scales appropriate to a given problem cannot be
simulated, complex turbulent flow simulations require the introduction of a turbulence model to
deal with the smallest scales. Large eddy simulations (LES) and the Reynolds-averaged Navier—
Stokes equations (RANS) formulation are the two main techniques used currently to undertake
simulations with complex geometries at the relevant Reynolds numbers. However, despite the
recent advances in computational fluid dynamics (CFD) methods, the use of sophisticated grids
and high-order numerical schemes, the resulting accuracy obtained with these strategies is very
often incompatible with the requirements for a detailed analysis of any complex fluid-flow problem
and therefore such numerical strategies are not really suitable for a better understanding of the
turbulence problem. It is therefore of crucial importance to keep developing numerical strategies
for massive parallel platforms in order to simulate turbulence problems with as much complexity
as possible without any modelling.

Only very few DNS codes are capable of undertaking massive simulations with several billion
mesh nodes on thousands of computational cores. Most of them are simulating idealized homoge-
neous, isotropic turbulence, using spectral methods with at least periodic boundary conditions in
two spatial directions. Indeed, for very simple flow configurations such as homogeneous isotropic
turbulence, in terms of accuracy and computational efficiency, the most spectacular gain is obtained
using spectral methods [1]. To the knowledge of the authors, the biggest DNS reported in a paper
are those performed by [2], where the authors performed DNS of homogeneous isotropic turbu-
lence with 4096 mesh nodes. Unfortunately, for fundamental problems in slightly more complex
geometry, the full spectral approach is no longer feasible. Note that the spectral element method
[3] seems to be a very promising strategy to undertake complex problems with the spectral accu-
racy. However, using this technique on thousands of computational cores is a challenging task that
requires important numerical developments to conciliate accuracy, efficiency and scalability.

The in-house code which forms the basis of this paper is called Incompact3d and can combine
the versatility of industrial codes with the accuracy of the best academic codes based on spectral
methods (the most accurate ones) and can be applied to complex turbulent flows. It is a powerful
tool to address rigorously high-resolution simulations of complex fluid-flow problems. Incompact3d
is already capable of running on 1024 computational cores, with up to 5 billion mesh nodes [4].
However, the HPC landscape is set to change to the point that it would be beneficial to improve
the parallel strategy used in the code. Indeed, the domain strategy currently in use in the code
is not efficient enough when O(10*) computational cores are used. As the problem size of our
simulations increases, this strong restriction leads to either memory requirement problems or wall
clock times longer than desirable for production purposes.

This paper has one main purpose: to describe the formulation of a new domain decomposition
strategy and report on the performance of the code on multiple massive parallel platforms with
different architectures. It is absolutely clear to us that the efficient and cost-effective exploitation of
the current and future high-performance parallel platforms is an essential element for our research
and the research of all those at the forefront of fluid mechanics in general and turbulent flows in
particular.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1737

The paper is organized as follows. After a brief description of the numerical methods in Section 2,
the new technique used to parallelize the code is described in Section 3. A description of the
original Poisson solver is presented in Section 4. The performance of the code is reported in
Section 5. Conclusions and future directions are summarized in Section 6.

2. NUMERICAL METHODS AND CURRENT PARALLEL STRATEGY

The main purpose of this paper is not to describe the numerical methods used in Incompact3d.
For a detailed analysis of the numerical methods, see [5]. However, it could be relevant to recap
the main characteristics of the code in order to better understand the proposed parallel strategy
presented in this paper.

2.1. General presentation of the code

Incompact3d solves the incompressible Navier—Stokes equations using sixth-order compact
schemes for the spatial discretization. For the time integration, different schemes can be used
(Adams—Bashforth or Runge—Kutta) depending on the flow configuration. To discretize the
parallelepipedal computational domain L, x L, x L., a Cartesian mesh of ny xn, xn; mesh
nodes is used, with the possibility to stretch the mesh in one spatial direction, using a mapping
technique proposed by [6, 7]. Inflow/outflow, periodic, free-slip, no-slip can be used in the three
spatial directions. The different options for a simulation with Incompact3d are presented in
Figure 1. To ensure the incompressibility condition, a fractional step method is used, requiring
the solution of a Poisson equation for the pressure. Following the technique of [8—10] extended
to high-order schemes (that can be adapted on a stretched mesh), the Poisson equation is fully
solved in spectral space using Fast Fourier Transform (FFT) routines. It should be emphasized
that the Fourier representation can be used, whatever the set of boundary conditions in the three
spatial directions, through the relevant use of cosine expansions. Combined with the concept of
the modified wave number, this direct (i.e. non-iterative) technique allows the implementation of

BC =0 - PERIODIC
BC =1 - FREE SLIP
BC =2 . NO SLIP, INFLOWIOUTFLOW

10 different sets of boundary conditions in Incompact3d

&

0-0-0
1-0-0
2-0-0
0-2-0
1-1-0
3

Y-direcson

1- Z-direction
2-
2:
2-
Mon-uniform mesh in the Y-direction

STR =1 - central mesh refinement
STR =2 - near the boundaries refinement
I

STR =3 - near the bottom boundary refinemean

-
L

X-gerection

2=
1=
2-
1-
2-

N]

-Possibility to add a “polymer” subrouting
-Possibility to add a “particle” subroutine

-Possibility to add a passive scalar J

Figure 1. Description of the versatility offered by Incompact3d.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1738 S. LAIZET AND N. LI

the divergence-free condition up to machine accuracy. A partially staggered mesh is used for the
pressure field that is shifted by a half-mesh from the velocity field in each direction. This type of
mesh organization leads to a more physically realistic pressure field with insignificant spurious
oscillations. Note finally that it is possible to solve an advection—diffusion equation for passive
scalars. ‘Polymer’ and ‘Particle’ modules have also been recently developed at Imperial College
and simulations have been recently conducted with interesting results [11, 12]. More information
regarding Incompact3d, especially about the Poisson solver, can be found in [5].

2.2. Numerical strategy

Incompact3d is a FORTRAN 90 code that was initially designed for serial processors, then
converted to vector processors and more recently converted to parallel platforms [4]. This code
is currently widely used for simulations with less than 6 billion mesh nodes on current parallel-
architecture platforms. This code is a very attractive tool for DNS and has recently allowed us to
study various original flow configurations [13—17].

In order to accurately simulate complex fluid flow problems, three requirements need to be
combined by a relevant choice of the numerical method:

e High accuracy (quasi-spectral accuracy): It is known that the most efficient choice to
avoid non-physical effects introduced by the numerical methods is a fully spectral approach.
However, such an approach constrains the choice of flow configuration (usually periodic
boundary conditions in at least two spatial directions). To allow the use of a wide range of
boundary conditions, Incompact3d takes advantage of the low computational cost of finite
difference schemes. The main idea here is to use operators based on sixth-order compact
finite-difference schemes [18] that mimic the behaviour of spectral methods via the so-called
‘spectral-like accuracy’. The use of such compact finite-difference schemes on a Cartesian
mesh can be seen as a numerical method that is close to the spectral one with only moderate
loss of accuracy which is however compensated by the possibility to treat more general
boundary conditions than just periodicity such as inflow/outflow boundary conditions, as
shown in Figure 1.

e Ability for complex geometries: In Incompact3d, an immersed boundary method (IBM) is
used where the basic principle is to adapt the forcing which replaces and models the effects
of the immersed solid body in a way that yields the no-slip condition at the boundary between
solid body and fluid. A priori, the combination of a high-order scheme with an IBM can
be problematic because of the discontinuity in velocity derivatives locally imposed by the
artificial forcing term. To the knowledge of the authors, a better accuracy than second order has
never been shown in the literature in the framework of IBM. The present code’s behaviour in
the presence of IBM is consistent with this limitation, with at the best second-order accuracy
observed in academic benchmarks [5]. This observation might suggest that the use of high-
order schemes is useless, second-order schemes being a priori sufficient. This assertion is
right formally (in terms of asymptotic convergence) but misleading practically, as shown for
instance in [19, 20].

e Efficiency and portability to massively parallel architectures: The purpose of this paper is to
examine whether this good combination of numerical methods and body modelling can be
favourably adapted to massive parallel platforms in order to allow very high-resolution DNS
of complex turbulent flows using thousands of computational cores. We will demonstrate that
Incompact3d is a powerful tool that can undertake DNS with up to O(10°) computational
cores thanks to an efficient 2D domain decomposition.

2.3. The 1D domain decomposition

The first parallel version of Incompact3d [4] was developed with several objectives: portability of
the code (ability to be run on a wide range of massive parallel platforms), scalability (preservation
of the code efficiency when hundreds of computational cores are used) and conservation of the
original structure of the code (direct solver for the Poisson equation and sixth-order compact

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1739

0,

Figure 2. 1D domain decomposition example using four MPI processes: (a) decomposed
in Y direction and (b) decomposed in Z direction.

schemes in the three spatial directions). In Incompact3d, the spatial differentiation (derivative
and interpolation) is ensured by compact sixth-order finite-difference schemes while an explicit
scheme (Adams—Bashforth or Runge—Kutta) is used for the time advancement. In practice, the
explicit nature of the time discretization does not lead to particular problems for the adaptation to
parallel computing. On the contrary, the spatial discrete operators are implicit in the sense that the
evaluation of the derivative/interpolation at one node requires to compute all its counterparts along
the direction of differentiation. In the context of parallel computing, this property is found to be
very penalizing due to the amount of communication exchange that it requires. The present sixth-
order schemes require the inversion of a tridiagonal distributed matrix, this generic problem being
highly time-consuming because of repetitive communications through the forward and backward
dependencies of the computed values node by node.

To ensure the scalability and keep the same structure of the code, the first parallelization strategy
was based on a one-dimensional (1D) domain decomposition method: the computational domain is
divided into equally sized subdomains in the z direction, ensuring an equal load balance (Figure 2,
right decomposition). Each MPI process is then assigned to one subdomain for a simultaneous
advancement to the next time level. The algorithm is structured such that no explicit synchronization
statements need to be used (same amount of work for each MPI process), which means that
the values of all variables are available simultaneously for all subdomains. At this stage, no
derivative/interpolation in the z direction can be computed. Therefore, a global transpose operation
can be accomplished to get relevant data onto the right MPI process via the use of a second domain
decomposition in the y direction (Figure 2, left decomposition). After this operation, calculations
can be performed in the z direction for each new slice. The global computation can then be
continued after an inverse global transpose operation. These global transpose operations require
the parcelling of small blocks of data on each MPI process, labelling these with the address of
the MPI-process that requires the information, transferring the data, reading it by receiving MPI
process and reconstructing the flow field. It is done with the MPI_ALLTOALL(V) instruction.
MPI_ALLTOALL is a collective operation in which all MPI processes send the same amount of
data to each other, and receive the same amount of data from each other. However, depending on
the total number of mesh nodes, each MPI process may send and receive a different amount of
data and provide displacements for the input and output data (for instance, if 65 mesh nodes have
to be split into 4 MPI processes, 3 will have to deal with 16 mesh nodes and 1 with 17 mesh
nodes). MPI_ALLTOALLV adds this flexibility to MPI_ALLTOALL. It is important to point out
that the performance of these two commands is mainly determined by the network hardware and
the quality of the MPI library used on each massive parallel platform. Historically, this global
transposition technique has been widely used mainly in spectral codes and forms for instance
the base of the well-known parallel FFTW library (Fastest Fourier Transform in the West, [21]).
Note that the Poisson equation, performed in spectral space, requires 3D FFTs that are performed
thanks to the FFTW version 2.1.5, based on the same 1D domain decomposition strategy used in
Incompact3d.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1740 S. LAIZET AND N. LI

2.4. Limitation of the 1D domain decomposition

It has been shown [4] that this strategy can lead to excellent parallel efficiency for the present code
with up to 1024 computational cores. Note that this parallelization strategy maintained the original
structure of the code since no changes were made in the computation of the spatial differentiations
(derivative/interpolation) and in the Poisson solver. Furthermore, as MPI tools and FFTW [21]
were used, the portability of the code was maintained and this version of Incompact3d is able to
run on a wide range of parallel platforms [4].

The main limitation of this first parallel strategy is that it was only possible to use a limited
number of computational cores n. (n. <min(ny, n;)) for a given simulation, the main consequences
being a memory requirement problem (each computational core handles too much workload) and/or
a computation wall clock time longer than desirable for production purposes (for instance, the
“five billion mesh nodes’ DNS performed by [22] took no less than 47 days to get a turbulent state
and to collect well-converged statistical data in time). This is a serious limitation as most massive
parallel platforms today have more than 10000 cores and some have more than 100000.* As a
result, a 2D decomposition strategy, a natural extension to the 1D idea, has been developed for
Incompact3d and is presented in the next section.

3. 2D DOMAIN DECOMPOSITION

Following the strategy used by CFD codes based on spectral methods which are currently running
on thousands of computational cores [2,24], a new strategy based on a ‘pencil’ (or 2D) domain
decomposition (see Figure 3) is considered in this paper in order to run bigger simulations and/or
drastically reduce the wall clock time of our current typical size simulations. This strategy is of
course fully compatible with our implicit schemes in space and can be seen as an extension of
the current 1D domain decomposition strategy. Note that [24] have observed a 10% extra cost
when upgrading their spectral code using a 2D domain decomposition strategy and argued that
this is a very small price to pay for the advantage of being able to significantly increase the
number of computational cores to run much bigger simulations and/or drastically reduced the wall
clock time. In fact, our experience (see Section 5) shows that a properly implemented 2D domain
decomposition is not necessarily slower than its 1D counterpart, in particular for large core counts.
In [24] is also shown that the scalability of their spectral DNS code (based on the P3DFFT library
[25] combined with a ‘pencil’ strategy) is very good up to 32768 computational cores, which
suggests that this strategy should work equally well in Incompact3D. At the moment, our biggest
simulation with about 5.4 billion mesh nodes (2785 x 1392 x 1392 mesh nodes) was running on
696 computational cores (with a theoretical limitation of 1392 computational cores) [22]. With the
new ‘pencil’ domain decomposition strategy, we can, in theory, run the same simulation with a
theoretical limitation of 1392 x 1392 computational cores, which will obviously drastically reduce
the wall clock time for our simulations.

Figure 3 shows that the same 3D domain as in Figure 2 can be partitioned into two dimensions
at a time. From now on, states a,b and ¢ will be referred to as X-pencil, Y-pencil and Z-pencil
arrangements, respectively. While a 1D domain decomposition algorithm swaps between two states,
a 2D domain decomposition needs to perform global transpose operations among three different
states. Different global transpose operations (up to six) can be defined but for Incompact3d, we
only use four global transpositions: (a — b), (b— c¢), (c— b) and (b — a). MPI_ALLTOALL(V) is
used to perform the transpositions. It is significantly more complex than the 1D case: there are two
separate communicator groups. For a (Prow X Peo1) 2D MPI-process grid, Prow groups of Peo) MPI
processes need to exchange data among themselves for (a <> b); P groups of Py MPI processes
need to exchange data among themselves for (b <>c). A very important feature here is that when
performing the (a <> b) and (b <> ¢) a given MPI process is not dealing with all the other processes

#The June 2010 TOP500 list [23] shows that 46 of the top 50 systems have more than 10000 cores; 95 of the top
100 systems have more than 5000 cores; the largest IBM BlueGene system Jugene has 294912 cores.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

INCOMPACT3D 1741

Figure 3. 2D domain decomposition example using a 4 x 3 MPI processes.

Start in X

X-=>Y->Z->¥Y->X
(24 global operations)

No swap

X->¥-Z
{16 global operations)

Stay in Z
(4 global operations,
up to 16 depending BC)

| ED Z-=>Y-=X
P (5 global operations)
+(extra 6 global operations

1/0, 1 if check divergence free)

Figure 4. Stucture of Incompact3d with the 2D domain decomposition.

doo| awi]

(as the name ALLTOALL(V) implies). For instance, for the (b — ¢) transposition in Figure 3, the 4
MPI processes of the first line of pencils in b are dealing with the first line of pencils in c. By doing
communications in sub-groups, it is possible to drastically reduce the time spent in global commu-
nications. Also, this is why there are no direct (a <> ¢) transpositions in Incompact3d as they will be
very expensive. Finally, it is also worth mentioning that the implementation of the communication
routines are very sensitive to the orientations of pencils and their associated memory patterns. There-
fore, the packing and unpacking of memory buffers for the MPI library needed to be handled with
great care.

It is important to point out again that we did not change the derivative/interpolation subroutines
and the Poisson solver as everything is always done in one spatial direction at a time. The derivatives
and interpolations in the x direction (y direction, z direction) are performed in X-pencil (Y -pencil,
Z-pencil), respectively. The 3D FFTs required by the Poisson solver are also broken down as series
of 1D FFTs computed in one direction at a time. In order to reduce the number of global transpose
operations, it is necessary to regroup some derivatives/interpolations operations for each spatial
direction and compute them at the same time. The structure of the code is presented in Figure 4 in
order to demonstrate the management of the pencil swaps. For the Poisson solver in the spectral
space, a single division is required and the modified wave numbers combined with the transfer

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOI: 10.1002/fid

1742 S. LAIZET AND N. LI

functions are all independent of each other. Note that, when performing the 3D FFT forward, we
are in Z-pencil in the physical space, then in X-pencil in the spectral space and finally, in Z-pencil
again after the 3D FFT backward, in order to reduce the global transpose operations. For the
code using tri-periodic boundary conditions, 55 global transpose operations need to be performed
at each time step. This number appears to be significant but we will show in the subsequent
sections that, despite a large number of global transpose operations, this strategy is suitable
for simulations using thousands of computational cores mainly due to its favourable scalability
characteristics.

3.1. Shared memory implementation

Modern massive parallel platforms are often based on multi-core processors and cores on the same
node often have shared local memory. For the MPI_ALLTOALL(V) type of communication in
which each MPI process has to send/receive messages to/from all other MPI processes, we can
imagine that when using all the cores of a processor, there is some traffic jam as all the cores
on the same physical node compete for their shared network interface. It could become a serious
issue on the next generation of massive parallel platforms (such as the recently unveiled Cray XT6
system based on 24-core nodes currently being built in the UK). One possible solution is to create
shared send/receive buffers on each node. Then only leaders of the processors participate in the
MPI_ALLTOALL(V) communication, resulting in fewer but larger messages passing through the
network, hopefully improving the communication performance.®

In the base communication library used by Incompact3D, a shared-memory implementation
has been provided in additional to the standard MPI_ALLTOALL(V) implementation. It utilizes
the low-level System V IPC library to allocate shared-memory segments and provides a Fortran
wrapper to hide the shared-memory details to applications for better portability. The performance
benefit of this technique will be shown later in particular in Figure 10. It is particularly beneficial
when a lot of small messages are passed within the system where network latency becomes the
performance bottleneck.

4. THE POISSON SOLVER

The originality of Incompact3d is that the Poisson equation is solved in spectral space, even if the
boundary conditions do not seem well suited for a Fourier representation. It is well known that the
treatment of incompressibility is a real difficulty to obtain solutions of the incompressible Navier—
Stokes equations. The unavoidable solving of the Poisson equation can be computationally very
expensive, especially when high-order schemes are used in combination with iterative techniques.
Based on high-order finite difference schemes and expressed in physical space, the inversion of
a Poisson equation requires to use sophisticated methods that can be computationally expensive
(see [26] for an example of 3D solver of Poisson’s equation based on compact schemes). On the
contrary, performed in Fourier space, the equivalent operation is cheaper and easy to code with
the help of FFT libraries.

In order to drastically reduce any spurious oscillations on the pressure field, the pressure field
is staggered by half a mesh with the velocity one. In practice, staggered FFTs are needed, which
requires some pre- and post computations in the three spatial directions in physical space and in
spectral space [9, 10]. In our distributed solver, it could introduce some extra global transposi-
tions, depending on the boundary conditions. However, we have checked that these extra global
transpositions (up to 12 in the worth case) do not affect the good scalability of the code.

$Note that we had the chance to run very few simulations on the new XT6 HECTOR system based on 24-core
processors and we have noticed that the code with the shared memory implementation is 20-30% faster than the
classic one.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

INCOMPACT3D 1743

4.1. Review of parallel FFT libraries

FFTs have been widely used in the last 50 years and are perhaps the most ubiquitous algorithms
used today in CFD. FFT software packages are available everywhere. Almost all hardware vendors
propose their own FFT products tuned for a dedicated architecture but there are also many open-
source products. Unfortunately, when working on massive parallel systems, the options are very
limited.

FFTW [21] is one of the most popular FFT packages available. It is open-source, supporting
arbitrary input size, portable and delivers good performance due to its self-tuning design (planning
before execution). There are two major versions of FFTW. The version 2.x has a reliable MPI
interface to transform distributed data. Note that the old version of Incompact3d was based on this
version. However, it is based on a 1D decomposition strategy, which, as discussed earlier, limits
the scalability of large applications (with more than 1024 computational cores for Incompact3d).
Its serial performance is also inferior to that of version 3.x, which has benefited from a complete
redesign and is much faster than the version 2.x. Unfortunately, the MPI interface of version 3.x
is in an unstable alpha stage and has been so for many years. Therefore, there is no reliable way
to compute multidimensional FFTs in parallel with this package. For systems based on AMD
processors (such as Cray XT HECToR), it is possible to use the FFT routines provided by AMD
Core Math Library (ACML)[27] which is specially tuned for AMD architectures. AMD does
provide a multi-threading version of the library but there is no distributed support. Thus ACML
can only be used to compute the underlying 1D FFTs.

There are several open-source packages available which implement 2D-decomposition based
distributed FFTs. For example, Plimpton’s parallel FFT package [28] provides a set of C routines to
perform 2D and 3D complex-to-complex FFTs together with very flexible data remapping routines
for data transpositions. The communications are implemented using MPI_SEND and MPI_IRECV.
Takahashi’s FFTE package in Fortran [29] contains both serial and distributed version of complex-
to-complex FFT routines. It supports transform lengths with small prime factors only and uses
MPI_ALLTOALL to transpose evenly distributed data. There is no user callable communication
routines.

Finally there is the well-known open-source package P3DFFT [25], which has been widely
adopted by scientists doing large-scale simulations in many research areas especially those based
on spectral codes. The P3DFFT project was initiated at the San Diego Supercomputer Center by
Dmitry Pekurovsky as the foundation of P. K. Yeung’s spectral DNS code, which is quite efficient
and scales up to 32768 computational cores [24].

However, initial attempts to adapt this package in Incompact3d proved to be impractical.
P3DFFT, although suitable for the Poisson solver, targets purely spectral applications, by performing
only real-to-complex (r2c) and complex-to-real (c2r) FFTs and its communication routines handling
complex data type. There are FFT-specific features (such as the padding of real input for in-place
transforms) built in its logic and data structure which are not relevant for finite difference codes
that require a more general domain decomposition library to handle global data transpositions.
Therefore, we had to develop our own library from scratch, based on a two-layer design with a
general-purpose 2D decomposition library as the foundation and a distributed FFT library built on
the top. The FFT library is also a general-purpose one, supporting both complex-to-complex (c2c)
and real-to-complex/complex-to-real transforms (r2c/c2r) [30].

4.2. FFT engines

The distributed FFT interface only performs data management and communications. The actual
computations—all the 1D FFTs—are delegated to a third-party FFT library and are always
performed using data in local memory.

To date, Incompact3d’s FFT interface supports six different FFT engines: a generic algorithm
[31], FFTW (version 3.x) [21], ACML [27], FFTPACK (version 5) [32], Intel MKL [33] and
IBM ESSL [34]. There are obviously advantages and disadvantages of using one or the other FFT
engines, depending on the hardware and software environment.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1744 S. LAIZET AND N. LI

The generic implementation is extended from an algorithm proposed by Glassman [31]. Although
not very efficient, it can be used on every massive parallel platform without installing any external
library. FFTPACK [32] is included here as an FFT engine because it is widely used by legacy
applications using elliptic PDE solvers (including Poisson solvers). FFTW [21] is the most popular
open-source FFT package and is widely used. The FFTW’s planning, although very powerful, is
not particularly easy to use in this parallel library because it requires proper memory alignment
which cannot be guaranteed in Fortran.! All others are highly optimized vendor libraries with the
ACML engine [27] specially tuned for AMD processors, the M K L engine [33] tuned for Intel
processors and the ESSL engine [34] designed to be efficient on IBM Power-x based architectures
(such as BlueGene Jugene). All these engines have their strengths and weaknesses. For example,
ACML has a very limited r2c¢ and c2r support; MKL is not really convenient to use as it does
not directly accept multi-dimensional arrays as input/output; ESSL only supports a limited choice
of FFT length. One objective to implement the distributed FFT library on top of all these FFT
engines is to hide all such details (some are purely software engineering issues unrelated to the
scientific works) and make the application portable on all kinds of platforms.

5. PERFORMANCE EVALUATION AND SCALABILITY

To investigate the performance of Incompact3d, a large number of simulations have been conducted
on different platforms, based on different architectures. HECToR in the UK, JADE in France and
Jaguar in the US, are based on high-frequency processors with a large amount of memory available
per computational core and are limited to 16384-core simulations for HECToR, 131072-core for
Jaguar and 4096-core simulations for JADE. Jugene in Germany, an IBM BlueGene, is based on
low-frequency processors with a relatively small amount of memory available per computational
core and is limited to 262 144-core simulations.

The migration on each platform has been achieved with very limited effort due to the excellent
portability of the code that required only an MPI library and a Fortran compiler. Note also that for
most of the simulations presented in this section, the generic FFT engine had been used (except
for the FFT library benchmarking), even if our FFT interface allow us to use a wide range of FFT
engines (see Section 4 for more details about our FFT interface).

5.1. Test environment

The HECToR configuration is an integrated system known as ‘Rainier’, which includes a scalar
MPP XT4 system and storage systems. The XT4 comprises 1416 compute blades, each of which
has four quad-core processor sockets. This amounts to a total of 22656 computational cores, each
of which acts as a single CPU. The processor is an AMD 2.3 GHz Opteron. Each quad-core socket
shares 8 GB of memory. The theoretical peak performance of the system is 208 Tflops. Each quad-
core socket controls a Cray SeaStar2 chip router. This has six links which are used to implement
a 3D-torus of processors. The point-to-point bandwidth is 2.17 GB/s, and the minimum bi-section
bandwidth is 4.1 TB/s (latency around 6 ps). HECToR is located at the University of Edinburgh,
in Scotland.

The JADE configuration is an SGI Altix ICE 8200 that comprised 1536+ 1344 compute blades.
1536 compute blades are based on two quad-core processor sockets with 2.8 GHz Intel quad-core
E5472 (Hapertown) processors. 1344 compute blades are based on 2 quad-core processor sockets
with 2.53 GHz Intel quad-core E5540 (Nehalem) processors. Each quad-core socket shares 32 GB of
memory. This amounts to a total of 23 040 computational cores, each of which acts as a single CPU.
The theoretical peak performance of the system is 268 Tflops. The bandwidth is 25.6 GB/s among
all the compute blades. It is located in Montpellier, at GENCI-CINES (Grand Equipement National
de Calcul Intensif—Centre Informatique National de I’Enseignement Supérieur) in France.

11t is necessary to plan every transforms before execution (time consuming) or to plan on globally defined data
structures (even temporary work arrays have to be defined globally, which is memory consuming).

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

INCOMPACT3D 1745

The IBM Blue Gene/P Jugene is an integrated system that includes 72 Racks with 32 nodecards
per 32 compute nodes (total 73728). Each compute node comprises a 4-way SMP 32-bit PowerPC
450 core (850 MHz) for a total of 294912 computational cores. 2 GB are available per processor.
The overall theoretical peak performance is 1 Pflops, with a performance of 825.5 Tflops at the
Linpack benchmark. The network is based on a 3D torus with a 12.8 GB/s Ethernet. It is the most
powerful platform in Europe with the largest number of computational cores in the world and is
located in Julich, Germany.

The Jaguar system consists of an 84 cabinet quad-core Cray XT4 system and 200 upgraded Cray
XTS5 cabinets, using six-core processors. The XT4 has 8 GB of memory per node while the XT5
has 16 GB per node, giving the users a total of 362 TB of high-speed memory in the combined
system. The two systems are connected to the Scalable I/O Network (SION), which links them
together and to the Spider file system. The XTS5 system has 256 service and I/O nodes providing
up to 240GB/s of bandwidth to SION and 200 GB/s to external networks. The XT4 has 116
service and I/O nodes providing 44 gigabytes per second of bandwidth to SION and 100 GB/s
to external networks. With a peak speed of 2.33 Pflops, Jaguar which is located at Oak Ridge
Leadership Computing Facility (OLCF) in the US, is the world’s fastest supercomputer.

According to the June 2010 ranking issued by the well-known TOP500 website [23], Jaguar,
Jugene, JADE, HECToR are, respectively, number 1, 5, 18 and 26 in the ranking of the most
powerful massive parallel platforms in the world.

5.2. FFT library performance

Large-scale parallel scaling benchmarks of the FFT interface were done on HECToR, Jugene
and Jaguar, using problem sizes up to 81923 mesh nodes (nearly 550 billion mesh nodes). The
timing results presented in Figure 5 are the time spent to compute a pair of forward and backward
transforms on a random signal, for complex to complex data (c2c) and for real to complex data
(r2¢/c2r). The underlying FFT engine is version 4.3 of ACML FFT [27] for all the CRAY systems
based on AMD processors. In all cases, the original signals were recovered to machine accuracy
after the backward transforms—a good validation for the FFT interface itself. Up to 16384 cores
were used on HECToR, and on Jugene (the larger massive parallel platform at the moment) and
Jaguar (the most powerful massive parallel platform at the moment) fewer but larger tests were
arranged using up to 131072 cores.

T T
Jugene 10243 c2c + HECToR 40963 c2¢c
1000 - Jugene 1024° r2c/c2r v HECToR 4096° r2c/ic2r © 1
Jugene 2048°c2c - Jaguar 4096°c2c =
Jugene 2048° rac/c2r Jaguar 4096° rac/c2r ©
Jugene 4096%c2c ¢ Jaguar 81 92%c2c *
Jugene 4096° r2c/c2r © Jaguar 81 92% r2c/c2r x
2 100 I HECToR 20483 c2c Ideal - |
£ HECToR 2048° r2c/c2r
e ®
GT) & - ¢ N \\X\ X
o . x
3 10} s e S N : .
c t >
8 v \éi\ P 9
. A = R
A T
+ 4, ~a o)
1+ o . - 4
el S
N
—
1 1 1
1000 10000 100000

Number of cores

Figure 5. FFT library scaling on HECToR, Jugene and Jaguar.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1746 S. LAIZET AND N. LI

Table 1. Poisson solver performance on HECToR.

B.C. B.C. B.C. B.C.

0-0-0 1/2-0-0 0-1/2-0 1/2-1/2-0/1/2
Size Cores s/time step s/time step s/time step s/time step
10243 128 4.81 7.38 6.81 8.23
20483 1024 6.26 10.38 8.86 11.56
81923 8196 7.59 14.41 12.63 16.31

It can be seen that the FFT interface scales almost perfectly on HECToR for all the tests done.
As expected, the r2c/c2r transforms are nearly twice as fast as the corresponding c2c¢ ones. On
Jaguar, the scaling is also close to the ideal one for larger core counts and the efficiency is 81%
for the largest test. For one particular problem size, 16384-core simulation on 4096> mesh nodes,
Jaguar took twice as much time to run than HECToR. This is not a surprise. Indeed, while HECToR
has quad-core processors at the moment, Jaguar has two six-core chips built on each node. The
problems set up for these benchmarks really prefer a power-of-2 core count to run efficiently as
the communication network can be used in a balanced way.! On Jugene, the scaling is also seen
to be very good.**

5.3. Influence of the boundary conditions

As already stated previously, it is possible to use all kinds of boundary conditions for the velocity
despite the use of a fully spectral Poisson solver (see Figure 1). Because the pressure field is
staggered by a half mesh with the velocity field, passing from/to physical space to/from spectral
space require some pre and post computations (see [9] and [5] for the basic principle of these
computations). The algorithm involves the following steps:

Pre-processing in physical space (with eventually global transpose operations)

3D forward FFT

Pre-processing in spectral space (with eventually global transpose operations)

Solving the Poisson by a division of the modified wave numbers combined with the associated
transfer functions

Post-processing in spectral space (with eventually global transpose operations)

e 3D inverse FFT

e Post-processing in physical space (with eventually global transpose operations).

The forward and backward transforms are standard FFTs (even for data sets with non-periodic
boundary conditions), which are passed to the FFT library. Depending on the set of boundary
conditions, some of the pre- or post processing steps may be optional (for instance when periodic
boundary conditions are applied in the three spatial directions, see Table I). Without giving any
mathematical details, the pre- and post processing involves operations which evaluate modified
wave numbers and package a Discrete Cosine Transforms into a suitable form so that standard
FFT routines can be used efficiently. More details can be found in [5].

These pre- and post processing can be either local (meaning that operations can be done
regardless of the parallel distribution of data), or global (meaning that calculations are only possible
when data sets involved are all in local memory, i.e. the operations have to be done in a particular
pencil-orientation). Fortunately, for the global case, whenever the data required are not available,
the global transposition routines provided by the decomposition library can be used to redistribute
the data.

IFor example, a communicator with 4 members always sits on the same physical chip on HECToR while this is not

guaranteed on either Jaguar (or the 24-core HECToR XT6 system that is currently being built).

**The apparent super-linear scaling achieved for the 1024° mesh case is due to the switch to the TORUS network
topology at 1024 cores.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

INCOMPACT3D 1747

The number of global transpositions required is dependent on the boundary conditions, and
the performance of the FFT library is summarized in Table I. Here, the boundary type O, 1
and 2 correspond to those defined in Figure 1. In the worst case 1/2—1/2—0/1/2, 12 additional
transpositions are required for the pre- and post processing whereas the 3D FFTs themselves
(one forward and backward pair) contain only four global transpositions. In that case, 66 global
transpose operations are performed per time step in Incompact3d. As expected, there is a factor
of up to 2 between a 0-0-0 simulation and a 1/2-1/2-0/1/2 one for wall clock time. The extra
number of global transpose operations appears to be high. However, these extra operations do not
affect the good scalability of the code. Indeed, for each time step (or each sub time step), we only
use the FFT library once. Furthermore, because FFT is such computationally intensive algorithm,
the actual benchmark results on three large problem sizes (10243, 20483 and 4096°) show that the
communication cost is only a small proportion of the total wall clock time.

5.4. Scalability

In the context of HPC, there are two common notions of scalability. The first notion is strong
scaling, which is defined as how the wall clock time of a simulation varies with the number of
computational cores for a global fixed problem size: ideally, the problem will run twice as fast
when the number of computational cores is doubled. The second is weak scaling, which is defined
as how the wall clock time varies with the number of computational cores for a fixed problem size
per computational core: ideally, when both the size of the problem and the number of computational
cores are doubled, the wall clock time remains constant.

Usually, the strong scaling is evaluated with the strong speedup that represents the gain with
respect to a sequential calculation. However, this criterion does not give always satisfying infor-
mation. First, a good speedup can be related to poor sequential performance (for example, if a
computational core runs slowly with respect to its communication network). Second, the sequential
time is usually not known, mainly due to limited memory resources. Except for the vector platform,
the typical memory size available for one computational core ranges from 0.5 to 32Gb. As a
consequence, in most of our configurations, the simulation cannot be run on a scalar platform with
a single computational core and no indication about the real speedup can therefore be obtained.
A definition of the speedup more often used, is related to the time ratio between a calculation with
Nyseq computational cores and Npj, computational cores, where Ny, is the smallest number of
computational cores that can be used to run the simulation using the maximum memory available
on a given massive parallel platform.

In order to measure the scalability but also to test the good portability of the new version of
Incompact3d, several simulations were performed with different number of mesh nodes (from
134 million mesh nodes to 68.7 billion mesh nodes) and computational cores (up to 262 144),
depending on the memory capacity of each platform. The simulations are presented in Table II.
Note finally that all the simulations presented in this section have been performed with periodic
boundary conditions in the three spatial directions and with the generic FFT engine.

Table II. Parameters of the simulations performed for the scalability investigations.

(nx,ny,nz) Computational cores Platform
(512,512,512) 1024 JADE, HECToR, Jugene
(1024, 256, 256) 32—512 HECToR
(2048,512,512) 128 — 4096 JADE
(2048,512,512) 128 — 16384 HECToR
(2048,512,512) 1024 — 131072 Jugene
(2048,2048,2048) 1024 — 16384 HECToR
(2048,2048,2048) 2048 — 131072 Jugene

(4096, 4096, 2048) 131072— 262144 Jugene

(4096, 4096, 4096) 8192 — 16384 HECToR
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757

DOI: 10.1002/fid

1748 S. LAIZET AND N. LI

100
2048x512x512 8cores/proc (Nehalem)
2048x512x512 8cores/proc (Harpertown) -
Ideal ---—-----

R . 8 _
4 - a
(]
£ N .
5 N
o a
(] IS
T “ a
c
8
e 1r i 4

0.1 L

100 1000 10000

Number of cores

Figure 6. Strong scaling on JADE.

As we only had a limited access to JADE, we were able to run only a small number of simulations
on that platform. For a simulation with about 537 million mesh nodes, Incompact3d shows an
excellent scalability with up to 4096 computational cores in Figure 6. Despite the large amount of
communication exchanges needed for the 2D domain decomposition, the scalability remains quite
close to the ideal one. The super-linearity observed with more than 2048 computational cores is
due to the network performance. We have observed that when using 2048 computational cores or
more on JADE (with the Hapertown processors, the network with the Nehalem processors being
more recent), the communications can be performed faster thanks to the hypercube structure of
the Infiniband network. Note that a similar behaviour can be observed on Jugene in Figure 5 when
using 2048 computational cores or more. As expected, there is a factor of more than 2 between
the simulations performed with the Nehalem and Hapertown processors. There is more memory
and network available for the Nehalem processors (newer and faster processors) so that there is
less traffic jam among the computational cores inside each processor and therefore the code can
run faster.

This important point about traffic jam is also exhibited on HECToR where we performed a
1024 x 256 x 256 mesh nodes simulation with 1, 2 and 4 cores per processor, as shown in Figure 7.
Using less computational cores per processors means that there is more network bandwidth available
for each MPI process inside each processor so that the global transpositions can be done much
faster. For instance, for 512 computational cores, this simulation is more than twice faster if
performed with only 1 computational core per processor rather than 4.

The very good behaviour of Incompact3d is confirmed on HECToR where we were able to
run a large number of simulations with up to 16384 computational cores, with up to 68 billion
mesh nodes. We also tried to evaluate the limit of the new domain decomposition strategy for
each platform with a relatively small size problem and a large number of computational cores. For
the 2048 x 512 x 512 simulation, the scalability is excellent with up to 8192 computational cores
and is really poor when using 16384 cores. This is the result of assigning a too small workload
to each process, the network latency becoming dominant eventually so that the scalability cannot
be improved. However, for a simulation with four times more mesh nodes (20483 mesh nodes),
the scalability is excellent up to 16384 computational cores. Furthermore, it is important to note
that, it was possible to achieve a 92% efficiency for the simulation with 68 billion mesh nodes
when using 8192 and 16384 computational cores. The last configuration represents 72% of the
system capacity and is currently not relevant for production purpose: it is obviously not realistic

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1749

' 1024x256%x256 4cc'>reslproc

100 L 1024%x256x256 2cores/proc 4 _
1024%x256x256 1cores/proc e
2048x512x512 4cores/proc ~ © x s
2048x2048x2048 2cores/proc ® L NN o
2048x2048x2048 4cores/proc RN
4096x4096x4096 4cores/proc Nk E
o o " b
2 AN *
[N
2 : : . '
= - “ =
] ﬁ a O []
o
(7]
2 ORI >
8 a x
4 41 NG . -
> 0
A o °
0.1 1 1 1 1
10 100 1000 10000 100000
Number of cores
Figure 7. Strong scaling on HECToR.
100 T T
2048x512x512 4cores/proc ~ +
2048x2048x2048 2cores/proc 2
NS 4096x4096x2048 4cores/proc *
A Ideal -
.
g 10k - .
3 | .
[Sy
£ -
g . .
(]
T 2 A
§ :
g 1} e i
0.1~ L -
1000 10000 100000 1e+06

Number of cores

Figure 8. Strong scaling on Jugene.

to undertake production simulations with such a number of computational cores on HECToR for
obvious practical reasons but this extreme test shows the impressive behaviour of the code when
a large amount of global operations is needed.

We also had the chance to investigate the properties of the code on Jugene which has a different
architecture by comparison with JADE and HECToR. Indeed, Jugene is based on low frequency
processors with a small amount of memory available per computational core. We have been able to
check the limit of the new version of Incompact3d with simulations performed with up to 262144
computational cores. The results are presented in Figure 8. Again, we have observed a very good
scaling behaviour for the code in general. For our current typical size production simulations
(2048 x 512 x 512 mesh nodes), we can observe a good scaling up to 65536 computational cores.
The same limitation observed with HECToR with 16384 computational cores is recovered here
but with 131072 cores computational cores. Note that for this simulation, it was only possible to

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1750 S. LAIZET AND N. LI

60
'HECToR 4core§/proc — '
HECTOR 2cores/proc --->---
JUGENE 1cores/proc -~~~
50 JADE (Harpertown) 8cores/proc
B JADE (Nehalem) 8cores/proc --© - 1
JADE (Nehalem) 4cores/proc
g af} P _
7]
(]
£
g 30 E
1]
T
c
3
2 20 E
10 B
0 1 1 1 1

1 10 100 1000 10000 100000
Number of cores

Figure 9. Weak scaling with fixed size problem of 4194304
mesh nodes (4.2M) per computational core.

use a maximum number of 512 computational cores with the old 1D domain decomposition. It is
now possible to drastically reduce the wall clock time for our current production simulations: a
3-month simulation with the old code can easily become a 2-day simulation with the new domain
decomposition strategy. For bigger size simulations, we can observe a decent scalability with
up to 262144 computational cores. For such a number of computational cores, the number of
communications (that are performed at the same time) is huge but the size of them is very small.
This is probably why the scalability is not perfect when hundreds of thousands of computational
cores are used.

As already said, weak scaling indicates how the restitution time varies with computational cores
count with a fixed problem size per computational core. It is also a very good way to compare the
performance of the different massive parallel platforms. In Figure 9, some weak scaling results,
obtained on JADE, HECToR and Jugene for the code are presented. For this study, we have fixed
a size of 4198400 mesh nodes per computational core, and we have increased the number of
computational cores, depending on the architecture of the platform. We have also investigated
the effect of playing with the number of MPI processes per processors. Even if the number of
communications is increasing when increasing the number of computational cores, the wall clock
time is globally increasing very slowly because all the communications are performed at the same
time. As expected, the fastest results are obtained with Jade (Nehalem, that have a very good
cache performance) using only four cores per processors and the slowest results are obtained with
Jugene, which is based on very slow frequency processors. For instance, for 512 computational
cores, Jade is capable of running the simulation using only 6.47 s/time step while Jugene is
using 34.54 s/time step and HECToR 19.80 s/time step (4 cores/proc) and 12.98 s/time step (2
cores/proc). Note that we also checked the performance of the old code based on a 1D domain
decomposition on HECToR and obtained a performance of 22.61 s/time step for the same number
(512) of computational cores. It proves that the new 2D domain decomposition is more efficient
than the old one when using the same number of computational cores, mainly because the global
transpose operations are not really global, as explained in Section 3.

As the frequency of the processors is well known, these simulations can eventually exhibit the
difference in the performance of the different networks. For instance, Jugene is based on 0.85 GHz
computational cores and HECToR on 2.3 GHz ones (HECToR computational cores are 2.7 times
faster). Assuming that Jugene is twice faster when using 1 core per processor rather than 4 cores

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1751

T T T T
25 Jugene 4cores/proc
Jugene 2cores/proc Emmmm
HECTOR 4cores/proc s
HECToR 2cores/proc ===
HECTOoR 4cores/proc with ShareMem =
HECToR 2cores/proc with ShareMem ——

-
o

seconds per time step
o

0.5

2*512 4*256 8*128 16*64 32*32 64*16 128*8 256*4 5122
Mapping Prow X Pcol

Figure 10. Mapping for 512 x 512 x 512 mesh nodes with 1024 cores.

per processor and that 34.54/19.80=1.74, we can say that Jugene is about 3.48 time slower than
HECToR when using 4 cores per processor. As we have a ratio of 2.7 between the frequency of the
processors, we can conclude that the performance of the Jugene network is about 30% slower than
the HECToR network, at least for Incompact3d. Therefore, if we want to have the same wall clock
time on HECToR and on Jugene for a given simulation, we have to use twice more computational
cores with 2 cores per processor or use four times more computational cores with 4 cores per
processor on Jugene.

In Figure 10, we present the influence of the shape of the 2D MPI process grid Prow X Peol for
512 x 512 x 512 mesh nodes with 1024 computational cores. In Figure 11, we present the influence
of the shape of the 2D MPI process grid Prow X Peol for 2048 x 2048 x 2048 mesh nodes with 2048
computational cores on HECToR only, with the share memory implementation (see Section 3.1).
Depending on the parallel platform architecture, in particular the network layout, some 2D grid
options deliver much better performance than others. It is, therefore, of crucial importance to test
these issues before running large production simulations. It can be seen that, subject to constraint
max(Prow, Peol) <min(nx, ny, nz):

e The code is always faster when using only few cores per processor, because of improved
network bandwidth and memory bandwidth.

e As expected, due to its low clock-speed processors, Jugene is much slower than HECToR
even when 2 cores per processor are used.

e When Py > Pcol, the code is very slow, and this conclusion is independent of the system.
This is related to the memory cache behaviour. ™

o When Pow < Peol, the code is faster than when Proyw > Peol-

e It seems that the fastest option for the 2D grid mapping is obtained when Poyw >~ Peol.

e The code with the shared memory implementation is slightly faster when Prow 2~ Pcol-

It is clear that the choice for P,y and for P, for a given problem is of crucial importance in
order to reduce the wall clock time of a simulation. Note however, that these conclusions may not
be representative for a large number of computational cores or for bigger size problems. In fact the
behaviour is also highly dependent on the network hardware, the time-varying system workload

For distributed 3D arrays, the first dimension, often the inner-most loop, is of size ny/Prow. A smaller Prow
translates into better memory striding patterns.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

1752 S. LAIZET AND N. LI

80 T T T T T T T T T T T T
2cores/proc .
4cores/proc I

70 4cores/proc with ShareMem =

60 - B

a
o
T
1

seconds per time step
w I
) =)
T T
1 1

N
o
T
1

10 B

1*2048 2*1024 4*512 8*256 16*128 32*64 64*32 128*16 256*8 512*4 1024*2 2048*1
Mapping Prow X Pcol

Figure 11. Mapping for 2048 x 2048 x 2048 mesh nodes with 2048 cores.

and the size and shape of the global mesh of the system, among other factors. An auto-tuning
algorithm is included in the code in order to allow the best 2D MPI process grid Prow X Pcol to be
determined at runtime for production simulations.

5.5. Communication cost

In order to evaluate the cost of the 2D domain decomposition strategy, several simulations have been
conducted on JADE, HECToR and Jugene using profiling software: CrayPat and Cray Apprendice
[35] on HECToR and open-source package Scalasca [36] on JADE, HECToR and Jugene.

In Incompact3d, the cost of the communication depends on both the number of data exchanged
among the MPI processes and the size of each data exchanged. Naturally, they are linked to the
number of computational cores (in this paper, we always have one MPI process per computational
core). Indeed, the number of data exchanged increases with the number of MPI processes whereas
the size of each data exchanged decreases. Table III shows the time cost for the main steps in
Incompact3d in the time advancement loop and also the global time cost of the communications
for a 2048 x 512 x 512 mesh nodes problem.

As expected, three different kinds of behaviour can be observed, strongly depending on the
architecture of the platform. Owing to the 2D domain decomposition strategy, most of the time
is spent in performing the different global transpose operations, especially on JADE where the
processors are very powerful. Therefore, up to 88% can be spent in communication, even if it does
not affect the scalability of the code. On the contrary, less than 50% of the global time is spent
in communication on Jugene. Indeed, because the frequency of the processors is very slow, more
time is spent in the computation of the derivatives/interpolations. These trends clearly show that it
is not really relevant to think that the scaling of a code depends only on the communication time,
as the scaling for this problem size is excellent on the three platforms. It should be noted that, as
the number of mesh nodes remains constant, the global transpose operations always concern the
same total amount of data. Therefore, it is natural to expect almost the same percentage for the
communication cost when increasing the number of computational cores, at least until a certain
limit where the data exchanged are really too small for efficient calculation and/or communication.
Finally, it is important to say that the 2D domain decomposition is almost as much expensive as the
previous 1D domain decomposition. Laizet et al. [4] reported that 42% is spent in communications

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1753

Table III. Detailed report of the cost for the main steps in a time loop for Incompact3d, for a
2048 x 512 x 512 simulations, with different numbers of computational cores, from 128 to 1024 on JADE,
from 128 to 8196 on HECToR and from 1024 to 8196 on Jugene.

Cores Conv-Diff. (%) Poisson (%) GradP (%) Div(x2) (%) Com (%) System
128 44.04 15.75 11.97 27.45 75.35 JADE
128 41.52 20.98 11.44 24.67 51.80 HECToR
256 47.30 14.39 10.39 27.30 69.93 JADE
256 41.77 20.13 11.37 25.08 51.76 HECToR
512 52.47 11.71 9.53 25.71 83.74 JADE
512 41.38 19.12 11.04 24.61 53.98 HECToR

1024 49.51 15.17 9.33 25.39 87.93 JADE

1024 43.20 18.69 11.18 24.23 56.42 HECToR

1024 38.34 27.07 9.68 22.52 45.63 Jugene

2048 42.33 16.33 9.89 23.02 58.56 HECToR

2048 36.26 25.26 9.04 20.85 46.62 Jugene

4096 41.36 14.09 8.81 21.18 63.82 HECToR

4096 35.73 21.78 8.33 21.78 44.88 Jugene

8192 37.10 10.21 6.69 16.30 61.05 HECToR

8192 33.01 24.35 8.19 19.30 45.89 Jugene

Table IV. Detailed report of the cost for the main steps in a time loop for Incompact3d, for
a 2048 x 2048 x 2048 simulations with 2048 computational cores (2 and 4 cores over 4) but
with a different mapping on HECToR.

Map Cores Conv-Diff. (%) Poisson (%) GradP (%) Div(x2) (%) Com (%) s/step
1x2048 2/4 31.46 41.00 7.47 18.18 72.51 18.01
1x2048 4/4 37.72 30.47 8.88 21.78 68.95 26.63
2x1024 2/4 32.06 39.76 7.30 19.79 71.30 17.23
2x1024 4/4 37.65 28.79 8.70 23.64 65.87 25.20
4x512 2/4 33.03 37.18 8.30 20.18 67.24 17.36
4x512 4/4 39.16 26.00 9.53 24.10 62.40 23.94
8x256 2/4 34.94 33.16 8.98 20.85 65.38 15.81
8x 256 4/4 41.23 22.31 9.77 25.47 64.01 23.42
16 x 128 2/4 36.83 30.28 9.55 21.48 63.36 15.93
16 x 128 4/4 42.14 21.55 10.66 24.35 59.10 22.07
32 x 64 2/4 38.33 27.93 10.18 22.18 63.72 14.09
32 x 64 4/4 43.39 19.90 11.26 24.18 61.74 21.83
64 x 32 2/4 38.14 27.84 10.39 22.84 60.06 14.55
64 x 32 4/4 42.73 20.27 11.54 24.19 57.82 22.72
128 x 16 2/4 38.72 26.13 11.12 22.77 59.47 15.54
128 x 16 4/4 43.01 19.54 11.59 24.71 59.09 22.77
256 x 8 2/4 39.34 24.82 11.21 23.38 55.92 16.95
256 x 8 4/4 42.77 19.05 11.51 25.44 51.09 23.15
512x4 2/4 42.62 17.71 13.11 25.53 49.59 23.61
512x4 4/4 45.34 13.96 14.08 25.80 51.86 30.91
1024 x2 2/4 45.12 11.46 15.62 26.93 37.52 36.70
1024 x 2 4/4 45.84 9.85 16.14 27.49 37.34 47.76
2048 x 1 2/4 44.90 8.15 15.91 30.67 36.89 56.09
2048 x 1 4/4 46.21 6.91 16.74 29.70 35.56 74.09

for a simulation with 201 million mesh nodes on 128 computational cores. Unfortunately, we tried
to use Scalasca with more than 8192 computational cores in order to investigate the behaviour
of the code with tens of thousands of computational cores but it was not working properly with
Incompact3d, the profiling software seems not mature enough for such extreme conditions.

We have also decided to investigate in detail the influence of the 2D mapping on the communi-
cation time which is also compared to the wall clock time. The problem size (2048 x 2048 x 2048
mesh nodes) and the number of computational cores (2048) are fixed. The results are presented
in Table IV. The main feature here is that there is no clear link between the wall clock time and

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1754 S. LAIZET AND N. LI

the communication cost. The wall clock time is strongly influenced by the shape of the pencil that
impacts the computation time. Indeed, for each pencil, and because sixth-order finite difference
schemes are used, the computation consists in performing operations in 3D loops. Therefore, the
size and shape of the inner loop direction directly impact the cost of a simulation. For instance,
for the 2048 x 1 mapping, even if less than 36.89% is spent in communication, the wall clock
time is very important, more than three times by comparison with the fastest one. Again, it proves
that it is not possible to deduce the performance of the code just with the communication cost. It
seems that the fastest mapping, Prow X Peol =32 x 64 (with 2 and 4 cores per processor), is obtained
when the communication part counts for about 60% of the total wall clock time. The balance
between communication and calculation seems optimum when Proy = Pcol, When the 2D shape of
the pencil is close to a square, i.e. ny/ Prow =n;/Pcol for all the X-pencils, n, /Prow=n;/ Pcol for
all the Y-pencils and ny/Prow =ny/ Pcol for all the Z-pencils. Another interesting feature here is
the decreasing cost of the Poisson equation when increasing P,y . Note that the Poisson equation is
just a division in spectral space so that its cost is mainly due to the communications and intensive
algorithm of the FFT library. Finally, it is important to recap here that, despite our optimized pencil
arrangement, no less than 55 (up to 67, for different sets of boundary conditions) global transpose
operations are needed at each time step, without affecting too much the scaling of the code when
thousands of computational cores are used.

Note also that for a 4096 x 4096 x 2048 mesh nodes simulation using 4096 computational cores
on HECToR, we have observed a performance of 0.285 Gflops per computational core for a total
of 1171 Gflops. There are many factors in the computer performance other than raw floating-point
computation speed, such as access performance, interprocessor communications, cache coherence
and memory hierarchy. For these reasons, a numerical code is only capable of a small fraction of
the ‘theoretical peak’ of a computational core. For the present simulation, 3.1% of the ‘theoretical
peak’ of the computational core are reached.

5.6. Practical flow: multiscale-generated turbulence

From a physical point of view, Incompact3d will help us to understand the recent experiments
performed at Imperial College London on fractal generated turbulence: The Turbulence, Mixing
and Flow Control group has been working for more than 8 years on new flow concepts. One
very recent example of a new flow concept originating from this group is that generated by
multiscale (fractal) objects. Multiscale (fractal) is a geometrical concept in which a given pattern
(cross, I or square in Figure 12) is repeated and split into parts, each of which is a reduced copy
of the whole. A multiscale (fractal) object can be designed to be immersed in any fluid flow
where there is a need to control the mixing and/or the noise generated by the turbulent flow.
Many wind tunnel measurements have been performed with impressive results [37-39]. It was
found that, unlike a regular object (where the turbulence is generated by only one scale), a slight
modification of one of the object’s parameters can deeply modify the turbulence generated by

A gk

bR B: o

uif
i B

Figure 12. Scaled diagrams of a fractal cross grid (left), a fractal square grid
(middle) and a fractal I grid (right).

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

INCOMPACT3D 1755

(] [fhl
(] [(HE]
[y (]
5 &

Figure 13. 3D Enstrophy isosurfaces of the turbulent flow generated by a fractal
square grid with three fractal iterations (see top left) with the new version of
the code. 3456 computational cores were used for this simulation.

the fluid’s impact on the object. Furthermore, the experiments exhibit one disconcerting property
unique to such flows: it is possible to decouple the input energy from the levels of turbulence
downstream of the multiscale object. These novel objects offer possibilities for new flow solutions
pertaining to industrial mixers, silent airbrakes, new ventilation and combustion devices. In order
to better understand the origins of the original properties of multiscale objects, it is necessary to
undertake high-fidelity simulations of such unique complex flows. Because of the complexity of
the flow configuration, these simulations require hundreds of millions mesh nodes and therefore it
was almost impossible three years ago to perform the numerical counterpart of the experimental
measurements.

Several simulations of multiscale-generated flows mainly based on a square pattern with only a
limited number of multiscale iterations (3) and with a relatively small input velocity by comparisons
with experiments have already been performed with success with the old version of the code
[4, 13, 14, 22]. Even if the preliminary results are very encouraging (some quantitative agreements
have been found with the experimental measurements), there is a clear need for bigger simulations
with the new version of Incompact3d that can only be undertaken with a decent wall clock time.
For instance, we are currently performing multiscale-generated turbulence simulations with 768
million mesh nodes (see Figure 13 for a 3D visualization of the flow). With the old version of
the code, such simulations would have required about 530 h on 288 computational cores (about
150000 core hours) in order to get well-converged data on time. With the new version of code,
we can run the same simulations with 3456 computational cores on HECToR for just 36 h (about
125000 core hours) to have the same level of convergence. For instance, the fully turbulent flow
presented in Figure 13 can now be obtained in about 12 h on HECToR with 3456 computational
cores. This time corresponds to a transient stage to evacuate the initial conditions and to a period
where the flow is becoming fully turbulent. With the old version of the code, it would have taken
about 130 h to obtain the same turbulent state.

Pioneering research on fractal-generated turbulent flows is particularly important because the
properties of some of them (exponential rather than power-law turbulence decay and kinetic
energy dissipation rate inversely proportional to Reynolds number) are so different from the usual
properties of idealized homogeneous isotropic turbulence. We are offered with a unique opportunity
to exploit these differences for an unprecedented attempt at understanding the turbulence problem,
using HPC.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOL: 10.1002/fid

1756 S. LAIZET AND N. LI

6. CONCLUSION

A numerical strategy suited for massive parallel platforms in order to run high-resolution DNS of
incompressible flows on thousands of computational cores is presented in this paper. The approach
proposed is based on a combination of high-order compact schemes, IBM and a 2D domain
decomposition. A priori, the combination of high-order schemes with domain decomposition can
be problematic because of the implicit nature of the schemes. However, the parallelization of
Incompact3d has been successfully performed and the code is able to solve computationally very
large fluid-flow problems with good efficiency on a large range of massive parallel platforms.
Portability has been successfully realized using generic independent-platform tools and protocols
like MPI. The global transformation operations are quite expensive with up to 90% of the total
cost of a simulation. However, we have shown that the scalability remains acceptable up to 262 144
computational cores. We have also shown that there is no simple link between the scaling of the
code and the time spent in communication. We also exhibit the importance of the shape of the
2D MPI process grid Prow X Peol that can impact directly on the time spent in the calculations and
therefore influence the wall clock time of a simulation.

In order to improve the performance of the code, especially on the next generation of processors
that will be based on a large number of cores, the potential of implementing OpenMP (Open
Multi-Processing), which is a shared memory parallel programming protocol will be investigated.
OpenMP can provide a second level of parallelism for improved performance on massive parallel
platforms having multi-core processors. We also would like to improve the management by the
code of the different cache levels of each computational core. The cache is a smaller, faster
memory which stores copies of the data from the most frequently used main memory locations.
Nowadays, there are three levels of caches per computational core. One interesting feature on the
new massive parallel platforms is that the third level of cache memory can be shared by all the
computational cores of a processor. For instance, in the new CRAY XT6 system which is based on
6-core processors with 4 processors per node, the 6 computational cores of a processor are sharing
6 MB of memory. We are investigating the possibility of taking advantage of this specificity in
order to improve the performance of the communication in the code, even if it will reduce the
portability of the code.

ACKNOWLEDGEMENTS

Sylvain Laizet acknowledges support from the EPSRC grant EP/E029515/1 and the UK Turbulence
consortium (EP/G069581/1) for the CPU time made available to us on HECToR without which this
study would not have been possible. He also thanks Eric Boyer, Prof. Eric Lamballais and Prof. Christos
Vassilicos for very useful discussions.

Ning Li thank colleagues Chris Armstrong and Ian Bush at NAG for their significant help in developing
the 2D decomposition library code.

The work on JADE has been performed under the HPC-EUROPA2 project (project number: 228398)
with the support of the European Commission—Capacities Area—Research Infrastructures).

For the simulations on Jaguar, this research used resources of the National Center for Computational
Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department
of Energy under Contract DE-AC05-000R22725.

Sylvain Laizet and Ning Li acknowledge that the developments outlined in this paper have been
achieved with the assistance of high performance computing resources (Tier-0) provided by PRACE on
Jugene based in Germany.

REFERENCES

1. Canuto C, Hussaini MY, Quarteroni A, Zang TA. Spectral Methods in Fluid Dynamics. Springer: New York,
1988.

2. Ishihara T, Gotoh T, Kaneda Y. Study of high Reynolds number isotropic turbulence by direct numerical
simulation. Annual Review of Fluid Mechanics 2009; 41:165-180.

3. Deville MO, Fischer PF, Mund EH. High-order Methods for Incompressible Fluid Flow. Cambridge University
Press: Cambridge, 2002.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757
DOIL: 10.1002/fid

INCOMPACT3D 1757

4. Laizet S, Lamballais E, Vassilicos JC. A numerical strategy to combine high-order schemes, complex geometry
and parallel computing for high resolution DNS of fractal generated turbulence. Computers and Fluids 2010;
39(3):471-484.

5. Laizet S, Lamballais E. High-order compact schemes for incompressible flows: a simple and efficient method
with the quasi-spectral accuracy. Journal of Computational Physics 2009; 228(16):5989-6015.

6. Avital EJ, Sandham ND, Luo KH. Stretched Cartesian grids for solution of the incompressible Navier—Stokes
equations. International Journal for Numerical Methods in Fluids 2000; 33:897-918.

7. Cain AB, Ferziger JH, Reynolds WC. Discrete orthogonal function expansions for non-uniform grids using the
fast Fourier transform. Journal of Computational Physics 1984; 56:272-286.

8. Kim J, Moin P. Application of a fractional-step method to incompressible Navier—Stokes equations. Journal of
Computational Physics 1985; 59:308—323.

9. Swarztrauber PN. The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete
solution of Poisson’s equation on a rectangle. SIAM Review 1977; 19:490-501.

10. Wilhelmson RB, Ericksen JH. Direct solutions for Poisson’s equation in three dimensions. Journal of
Computational Physics 1977; 25:319-331.

11. Chen L, Coleman SW, Vassilicos JC, Hu Z. Acceleration in turbulent channel flow. Journal of Turbulence 2010;
11(41):1-23.

12. Dallas V, Vassilicos JC, Hewitt GF. Strong polymer-turbulence interactions in viscoelastic turbulent channel flow.
Physica Review E 2010; in press.

13. Laizet S, Vassilicos JC. Direct numerical simulation of turbulent flows generated by regular and fractal grids
using an immersed boundary method. Proceedings of TSFP 6, Seoul, 2009.

14. Laizet S, Vassilicos JC. Multiscale generation of turbulence. Journal of Multiscale Modelling 2009; 1:177-192.

15. Lamballais E, Silvestrini J, Laizet S. Direct numerical simulation of a separation bubble on a rounded finite-width
leading edge. International Journal of Heat and Fluid Flow 2008; 29:612-625.

16. Lamballais E, Silvestrini J, Laizet S. Direct numerical simulation of flow separation behind a rounded
leading edge: study of curvature effects. International Journal of Heat and Fluid Flow 2010; DOI:
10.1016/j.ijheatfluidflow.2009.12.007.

17. Laurendeau E, Jordan P, Bonnet JP, Delville J, Parnaudeau P, Lamballais E. Subsonic jet noise reduction by
fluidic control: the interaction region and the global effect. Physics of Fluids 2008; 20(10):101519.

18. Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics 1992;
103:16-42.

19. Parnaudeau P, Carlier J, Heitz D, Lamballais E. Experimental and numerical studies of the flow over a circular
cylinder at Reynolds number 3900. Physics of Fluids 2008; 20:085101.

20. Parnaudeau P, Lamballais E, Heitz D, Silvestrini JH. Combination of the immersed boundary method with
compact schemes for DNS of flows in complex geometry. Proceedings of DLES-5, Munich, 2003.

21. FFTW official website. Available from: http://www.fftw.org.

22. Laizet S, Vassilicos JC. Direct numerical simulation of fractal-generated turbulence. Proceedings of DLES-7,
Trieste, 2008.

23. Top500 official website. Available from: http://top500.org.

24. Donzis DA, Yeung PK, Pekurovsky D. Turbulence simulations on o(10%) processors. Tera Grid Conference, 2008.
Available from: http://www.sdsc.edu/us/resources/p3dfft/.

25. P3D FFT official website. Available from: http://www.sdsc.edu/us/resources/p3dfft/.

26. Mercier P, Deville M. A multidimensional compact high-order scheme for 3-D Poisson’s equation. Journal of
Computational Physics 1981; 39:443-455.

27. ACML official website. Available from: developer.amd.com/cpu/Libraries/acml/pages/default.aspx.

28. Source code of Plimpton’s FFT library. Available from: http://www.sandia.gov/sjplimp/docs/fft/README.html.

29. Takahashi’s FFTE Fast Fourier Transform package. Available from: http://www.ffte.jp/.

30. Li N, Laizet S. 2DECOMPFFT a highly scalable 2d decomposition library and FFT interface. Cray User Group
2010, Edinburgh, 2010.

31. Source code of Glassman’s algorithm in Fortran. Available from: http://www.jjj.de/fft/glassman-fft.f.

32. FFTPACK Fortran package. Available from: http://www.netlib.org/tftpack/.

33. Intel MKL library official website. Available from: www.intel.com/cd/ids/developer/asmo-na/eng/223902.
htm?page=1.

34. IBM ESSL official website. Available from: www-03.ibm.com/systems/software/essl/index.html.

35. Official website for CrayPat. Available from: http://docs.cray.com/books/S-2376-41/S-2376-41.pdf.

36. Scalasca official website. Available from: http://www.scalasca.org.

37. Hurst D, Vassilicos JC. Scalings and decay of fractal-generated turbulence. Physics of Fluids 2007; 19:035103.

38. Seoud RE, Vassilicos JC. Dissipation and decay of fractal-generated turbulence. Physics of Fluids 2007; 19:105108.

39. Mazellier N, Vassilicos JC. Turbulence without Richardson—Kolmogorov cascade. Physics of Fluids 2010;
22:075101.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2011; 67:1735-1757

DOI: 10.1002/fid

