/
TensorFlow (ISC18)
TensorFlow (ISC18)
Welcome to ISC18 Student Cluster Competition.
Tensorflow 1.7.1 on Ubuntu 16.04 was used for this document.
Download Tensorflow source code
git clone https://github.com/tensorflow/tensorflow git checkout r1.7
Install Tensorflow dependencies
apt install bazel apt install python-numpy python-dev python-pip python-wheel pip install six numpy wheel
Build Tensorflow
$ cd tensorflow # cd to the top-level directory created $ ./configure # Choose GPU and VERBS support $ bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package $ bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg $ pip install /tmp/tensorflow_pkg/tensorflow-1.7.1-cp27-cp27mu-linux_x86_64.whl # For TensorFlow 1.7.1
Validate your installation
$ Python import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello)) If the system outputs the following, then you are ready to begin writing TensorFlow programs: Hello, TensorFlow!
Download Tensorflow model and benchmark
$ git clone https://github.com/tensorflow/models.git $ git clone https://github.com/tensorflow/benchmarks.git
Converting ImageNet data to TFRecord format
First, create a login at http://image-net.org and make sure that your hard disk has at least 500 GB of free space for downloading and storing the data. Here we select DATA_DIR=/imagenet-data $ DATA_DIR=/imagenet-data $ cd models/research/inception $ bazel build //inception:download_and_preprocess_imagenet $ bazel-bin/inception/download_and_preprocess_imagenet "${DATA_DIR}"
Run the Tensorflow benchmark using GPUs
$ DATA_DIR=/imagenet-data $ TRAIN_DIR=/imagenet-train $ cd benchmarks/scripts/tf_cnn_benchmarks $ python tf_cnn_benchmarks.py \ --data_format=NCHW --batch_size=64 \ --model=vgg16 --optimizer=momentum --variable_update=replicated \ --nodistortions --gradient_repacking=8 --num_gpus=2 \ --num_epochs=10 --weight_decay=1e-4 --data_dir=$DATA_DIR --use_fp16 \ --train_dir=$TRAIN_DIR --print_training_accuracy=true
Sample output
TensorFlow: 1.7 Model: vgg16 Dataset: imagenet Mode: training SingleSess: False Batch size: 128 global 64 per device Num batches: 20018 Num epochs: 2.00 Devices: ['/gpu:0', '/gpu:1'] Data format: NCHW Layout optimizer: False Optimizer: momentum Variables: replicated AllReduce: None ========== Generating model Running warm up Done warm up Step Img/sec total_loss top_1_accuracy top_5_accuracy 1 images/sec: 605.9 +/- 0.0 (jitter = 0.0) 7.774 0.000 0.000 10 images/sec: 598.9 +/- 3.7 (jitter = 8.8) 7.774 0.000 0.000 20 images/sec: 600.9 +/- 2.0 (jitter = 4.8) 7.774 0.000 0.000 30 images/sec: 600.5 +/- 1.6 (jitter = 6.1) 7.774 0.000 0.000 ... 19990 images/sec: 577.4 +/- 0.3 (jitter = 7.0) 4.494 0.234 0.453 20000 images/sec: 577.5 +/- 0.3 (jitter = 7.0) 4.583 0.195 0.438 20010 images/sec: 576.7 +/- 0.3 (jitter = 7.0) 4.828 0.219 0.422 ---------------------------------------------------------------- total images/sec: 576.26 ----------------------------------------------------------------
Related content
Secret Application for ISC23 - MILC
Secret Application for ISC23 - MILC
More like this
FluTAS for ISC23 SCC (Onsite)
FluTAS for ISC23 SCC (Onsite)
More like this
Coding Challenge for ISC22 SCC
Coding Challenge for ISC22 SCC
More like this
GRID (ISC18)
GRID (ISC18)
More like this
Getting Started with FluTAS for ISC23 SCC
Getting Started with FluTAS for ISC23 SCC
More like this
Getting started with Neko for ISC24 SCC
Getting started with Neko for ISC24 SCC
More like this